Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bangladesh to dramatically expand technology that doubles efficiency of urea fertilizer use

19.12.2007
Urea deep placement cuts nitrogen losses significantly

The Government of Bangladesh has announced that it will expand urea deep placement (UDP)—a technology that doubles the efficiency of urea fertilizer use—to almost 1 million hectares (ha) of rice land, reaching about 1.6 million farm families, in the coming boro or dry season.

UDP is the insertion of large urea briquettes into the rice root zone after transplanting. UDP cuts nitrogen losses significantly. Farmers who use UDP can increase yields by 25% while using less than 50% as much urea as before.

The effectiveness of UDP technology in Bangladesh was proven through research funded by the International Fund for Agricultural Development (IFAD) and implemented with the assistance of IFDC—An International Center for Soil Fertility and Agricultural Development. The Ministry of Agriculture of Bangladesh has requested that IFDC help implement the expanded project.

“Millions of rice farmers in Asia depend on urea fertilizer to meet the nitrogen needs of high-yielding rice varieties,” says Dr. Amit Roy, IFDC CEO. Most farmers, including those in Bangladesh, Vietnam, and Cambodia, broadcast urea into the floodwater.

But broadcasting is a highly inefficient application method because most of the nitrogen is lost to the air and water. Only one bag of urea in three is used by the plants.

Using UDP, Bangladesh’s dry season rice production is expected to increase by 548,000 tons, according to the Department of Agricultural Extension (DAE).

“Yields were comparatively good where urea was deep placed,” says Dr. C.S. Karim, Advisor, Bangladesh Ministry of Agriculture. “If we can save at least 20% of the urea by adopting UDP technology, we can supply a large part of the country’s demand from our own factories.”

UDP technology improves nitrogen use efficiency by keeping most of the urea nitrogen in the soil close to the rice roots and out of the floodwater, where it is more susceptible to loss as gaseous compounds or runoff.

The technology not only improves farmer income, but creates employment because of the need for the briquettes. Ten Bangladeshi manufacturers have produced and sold more than 2,000 briquette-making machines. The new UDP program will include the manufacture and establishment of some 300 briquetting machines to manufacture 2.7-gram briquettes.

UDP technology was introduced in Bangladesh in the late 1990s; by 2006 more than half a million farmers had adopted UDP. Average paddy yields had increased 20% to 25%, and income from paddy sales increased by 10%, while urea expenditures decreased 32%. Farmers who use UDP can reduce urea use by 78 to 150 kg/ha and increase paddy yields by 900 to 1,100 kg/ha. The net return to farmers of using UDP versus broadcasting urea averages $188/ha.

“I’m delighted that the Government of Bangladesh endorses the merit of this technology and has asked IFDC to be a part of the project,” Roy says.

Bangladesh’s success with UDP has become a model for other rice-growing countries, Roy says. IFDC has also introduced UDP in Cambodia, Vietnam, Nepal, Nigeria, Mali, Togo, and Malawi.

Thomas Hargrove | EurekAlert!
Further information:
http://www.ifdc.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>