Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bangladesh to dramatically expand technology that doubles efficiency of urea fertilizer use

19.12.2007
Urea deep placement cuts nitrogen losses significantly

The Government of Bangladesh has announced that it will expand urea deep placement (UDP)—a technology that doubles the efficiency of urea fertilizer use—to almost 1 million hectares (ha) of rice land, reaching about 1.6 million farm families, in the coming boro or dry season.

UDP is the insertion of large urea briquettes into the rice root zone after transplanting. UDP cuts nitrogen losses significantly. Farmers who use UDP can increase yields by 25% while using less than 50% as much urea as before.

The effectiveness of UDP technology in Bangladesh was proven through research funded by the International Fund for Agricultural Development (IFAD) and implemented with the assistance of IFDC—An International Center for Soil Fertility and Agricultural Development. The Ministry of Agriculture of Bangladesh has requested that IFDC help implement the expanded project.

“Millions of rice farmers in Asia depend on urea fertilizer to meet the nitrogen needs of high-yielding rice varieties,” says Dr. Amit Roy, IFDC CEO. Most farmers, including those in Bangladesh, Vietnam, and Cambodia, broadcast urea into the floodwater.

But broadcasting is a highly inefficient application method because most of the nitrogen is lost to the air and water. Only one bag of urea in three is used by the plants.

Using UDP, Bangladesh’s dry season rice production is expected to increase by 548,000 tons, according to the Department of Agricultural Extension (DAE).

“Yields were comparatively good where urea was deep placed,” says Dr. C.S. Karim, Advisor, Bangladesh Ministry of Agriculture. “If we can save at least 20% of the urea by adopting UDP technology, we can supply a large part of the country’s demand from our own factories.”

UDP technology improves nitrogen use efficiency by keeping most of the urea nitrogen in the soil close to the rice roots and out of the floodwater, where it is more susceptible to loss as gaseous compounds or runoff.

The technology not only improves farmer income, but creates employment because of the need for the briquettes. Ten Bangladeshi manufacturers have produced and sold more than 2,000 briquette-making machines. The new UDP program will include the manufacture and establishment of some 300 briquetting machines to manufacture 2.7-gram briquettes.

UDP technology was introduced in Bangladesh in the late 1990s; by 2006 more than half a million farmers had adopted UDP. Average paddy yields had increased 20% to 25%, and income from paddy sales increased by 10%, while urea expenditures decreased 32%. Farmers who use UDP can reduce urea use by 78 to 150 kg/ha and increase paddy yields by 900 to 1,100 kg/ha. The net return to farmers of using UDP versus broadcasting urea averages $188/ha.

“I’m delighted that the Government of Bangladesh endorses the merit of this technology and has asked IFDC to be a part of the project,” Roy says.

Bangladesh’s success with UDP has become a model for other rice-growing countries, Roy says. IFDC has also introduced UDP in Cambodia, Vietnam, Nepal, Nigeria, Mali, Togo, and Malawi.

Thomas Hargrove | EurekAlert!
Further information:
http://www.ifdc.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>