Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red alert! How disease disables tomato plant's 'intruder alarm'

05.12.2008
How a bacterium overcomes a tomato plant's defences and causes disease, by sneakily disabling the plant's intruder detection systems, is revealed in new research out today (4 December) in Current Biology.

The new study focuses on a pathogen which causes bacterial speck disease in tomato plants. This bacterial invasion causes black lesions on leaves and fruit. Severe infection can cause extensive and costly damage to tomato crops, and researchers believe that understanding more about how this microbe works could lead to new ways of tackling it, and other plant diseases, without the need for pesticides.

Scientists have found that the pathogen is very effective at attacking tomato plants because it deactivates and destroys receptors which normally alert the plant to the presence of a dangerous disease - in the same way that an intruder would deactivate the burglar alarm before gaining entry to a house.

Professor John Mansfield from Imperial College London's Department of Life Sciences, one of the authors of the paper, says: "Once the receptors have been taken out, the plant's defences are 'offline' and the bacterium is able to spread rapidly, feeding on the plant without encountering any kind of resistance."

Together with colleagues at the Max Planck Institute in Cologne and Zurich-Basel Plant Science Centre, Professor Mansfield used an experimental model plant called Arabidopsis, which is also affected by the disease, to examine what happens at the molecular level when bacterial speck infects a plant. The team found that the pathogen injects a protein into the host cell, which then deactivates and destroys, from the inside, receptors on the cell's surface which are designed to alert the plant to the presence of invading microbes.

Deactivating the receptors stalls the plant's defence mechanism in its initial stages - ordinarily the cell surface receptors would kickstart a chain reaction leading to the production of antimicrobial compounds to fight and kill off the bacterial invader.

Professor Mansfield says: "This area of research has a wider significance beyond black speck disease in tomato, because the microbes that cause plant diseases probably all employ similar attacking strategies to suppress resistance in their hosts. The more we understand about how the pathogens that cause disease overcome the innate immunity to infection in crop plants, the better our chances of developing approaches to disease control that do not require the use of potentially harmful pesticides"

The research at Imperial was funded by the UK Biotechnology and Biological Sciences Research Council.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>