Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rebuilding flood plains, agriculture, economy

03.08.2010
Using a flood simulator, MU researchers reveal cottonwood trees as a profitable crop in devastated flood areas

When the Missouri River flooded in 1993 and 1995, it left a deep layer of sandy silt that covered thousands of acres of rich farmland. Now, MU forestry researchers may have found a crop that can survive a flood and act as a sustainable source of biomass.

During the 1993 flood, Gene Garrett, forestry professor and former director of the Center for Agroforestry, observed that cottonwood trees seemed to thrive in the flood waters. As a result, Garrett, John Dwyer and Hank Stelzer, associate professors in forestry, initiated a study at the flood laboratory at the University of Missouri Horticulture and Agroforestry Research Center (HARC), to identify superior cottonwood "clone" trees that would tolerate flood conditions. The clones trees selected for the study were chosen based upon above-ground production of biomass.

The researchers found that seed sources from Mead-Westvaco Corporation and Iowa State University survived and grew under flooded conditions. These results are promising when considering the economic potential for biomass production in the floodplains of Missouri.

"Among the fastest growing trees in North America, cottonwoods can be profitable," Garret said. "They can be used for biomass, paper, rough-cut lumber for home framing, and interior lumber for cabinets. They thrive in boggy and sandy areas that can no longer sustain traditional crops."

Located in New Franklin, Mo., the HARC flood lab, recognized as the most realistic flood simulator in the Midwest, features 24 two-foot-deep flood channels that can be flooded individually and drained to simulate a variety of flood conditions. Given the capability to independently adjust the channels for water depth, standing or flowing water, and duration of flooding, the lab allows researchers to determine the flood tolerance of selected grasses, legumes and tree species.

"Before the MU flood lab, we had little scientific evidence on which trees were flood tolerant," Garrett said. "Data on tree flood tolerance, as well as information about commercial markets for cottonwoods, are being given to Missouri farmers who now have more options in their bottomlands that are prone to flooding"

Dwyer also received a Mizzou Advantage grant to search for economical ways to reduce the consumption of fossil fuels by planting bio-energy plantations that provide woody biomass.

Mizzou Advantage was created to increase MU's visibility, stature and impact in higher education locally, statewide, nationally and around the world. An important first step in initiating the program is a round of grants, totaling more than $900,000, that will fund 26 networking and other projects. MU officials' goal is that Mizzou Advantage will strengthen existing faculty networks, create new networks and propel Mizzou's research, instruction and other activities to the next level.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Agroforestry HARC flood lab Missouri Rebuilding

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>