Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New rearing system may aid sterile insect technique against mosquitoes

New tray and rack system is expected to be able to successfully rear 140,000–175,000 adult mosquitoes per rack

The requirement for efficient mosquito mass-rearing technology has been one of the major obstacles preventing the large scale application of the Sterile Insect Technique (SIT) against mosquitoes.

However, according to a new article in the next issue of the Journal of Medical Entomology, scientists at the Untited Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA) have developed a larval rearing unit based on the use of a stainless steel rack that is expected to be able to successfully rear 140,000–175,000 adult mosquitoes per rack.

In "A New Larval Tray and Rack System for Improved Mosquito Mass Rearing" the authors report that the new mechanized rearing unit is simple to handle, maintains minimal water temperature variation and negligible water evaporation, and allows normal larval development. The mosquito mass-rearing tray was designed to provide a large surface area of shallow water that would closely mimic natural breeding sites, and the trays stack into a dedicated rack structure which fill and drain easily. Furthermore, the low amount of labor required to operate the system also reduces costs.

"Our larval rearing unit could enhance any mosquito control strategy in which large-scale releases of mosquitoes are needed to suppress or replace natural populations," said lead author Fabrizio Balestrino.

The Journal of Medical Entomology ( is published by the Entomological Society of America (, the largest organization in the world serving the professional and scientific needs of entomologists and people in related disciplines. Founded in 1889, ESA today has more than 6,000 members affiliated with educational institutions, health agencies, private industry, and government.


Fabrizio Balestrino
Phone (in Austria): (43) 1 2600 28407
Jeremie Gilles
Phone (in Austria): (43) 1 2600 28407
Mark Benedict

Fabrizio Balestrino | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>