Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainfall, Timing of Manure Application Affect Carbon Losses

23.06.2009
Scientists at Purdue University investigate the impacts of manure application, crop rotation, and the rate of nitrogen application on carbon losses in the Journal of Environmental Quality.

Dissolved organic carbon (DOC) losses from tile drains are an underquantified portion of the terrestrial carbon cycle. This is particularly important in the eastern corn belt where tile drainage dominates the agricultural landscape.

Specific land management practices, such as manure application, can play a large role in the export of DOC as soluble organic carbon is applied to or injected into the soil surface. As animal agriculture intensifies in the upper Midwest, measuring DOC exported through tile drains is important when evaluating carbon budgets and carbon sequestration potential.

Scientists at Purdue University have investigated the impacts of manure application, crop rotation, and nitrogen application rate on DOC losses from tile drains. Research was conducted over a six-year span (1998-2004) at Purdue University’s Water Quality Field Station, which was designed specifically to measure drainflow and solute losses from agricultural practices. Forty-eight drainage lysimeters were established at the field site in 1992. Twelve field treatments included a restored prairie grass, continuous corn rotations and corn–soybean rotations fertilized at three nitrogen rates, and continuous corn rotations fertilized with lagooned swine effluent applied in the spring or fall of each year. The study was funded by the USDA through Consortium for Agricultural Soils Mitigation of Greenhouses program and through the CSREES-NRI Watershed Processes and Water Resources Grant; the results were published in the May issue of the Journal of Environmental Quality.

The study determined that annual losses of DOC were not affected by any crop management practice. However, when drainage-inducing rainfall occurred with one month of manure application, the monthly DOC concentration of the manured plot was greater than that of non-manured plots. Overall, drainage hydrology was determined to be the largest sole driver of DOC loss. Greater daily drainflows were associated with higher DOC concentrations compared to lower daily drainflows. This indicates that larger storms effectively “flush” DOC from the soil systems.

Dr. Matt Ruark, now an Assistant Professor at the University of Wisconsin-Madison, stated, “Understanding the concentrations and amounts of DOC contributed to surface waters from tile drains is essential for evaluating the overall aquatic ecology of a watershed. This is of particular importance in the eastern corn belt, where up to 80% of the land in agricultural watersheds are tile drained.”

Further research is required to evaluate the fate of tile drainage–exported DOC once it enters the surface water system. The effect of manure management on the availability of DOC leached into subsurface soil is currently being investigated. Ongoing research at the water quality field station is being conducted to quantify nutrient and contaminant losses in tile drains as a result of manure application and crop rotation.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/38/3/1205.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>