Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"A-Maize-ing" Discovery Could Lead to Higher Corn Yields

26.03.2010
Scientists may have made an “a-maize-ing” discovery that could lead to higher corn yields in the United States. In a new research report published in the March 2010 issue of the journal GENETICS, scientists used tropical maize from Mexico and Thailand to discover chromosome regions responsible for detecting seasonal changes in flowering time (called the “photoperiod response”).

This discovery may lead to higher crop yields, improved disease resistance, and heartier plants able to withstand severe weather. As one of the United States’ largest crops, corn is used for food, feed, sweetener, fuel, plastics, and more.

“Photoperiod response is the major barrier to using tropical maize for the improvement of temperate maize varieties,” said James B. Holland, Ph.D, a researcher involved in the work from the U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit at North Carolina State University. “By understanding the genetics of this barrier, we hope to be able to overcome it more quickly to broaden the genetic diversity of temperate maize.”

To discover these important regions of the plant’s genome, researchers interbred two tropical, photoperiod-sensitive corn lines (one from Mexico; one from Thailand) with two photoperiod-insensitive corn lines from the United States, and grew out hundreds of progeny lines in North Carolina (long day-length summers) and in Florida (short day-length winters). Lines with strong photoperiod response were identified as those flowering much later in North Carolina, compared to Florida. Researchers then genetically mapped all of the lines and identified DNA markers associated with the photoperiod response. The genomic regions carrying the major photoperiod response genes were then identified.

In addition to allowing for improved strains of domestic corn, the research also is important because it suggests that the genes controlling the photoperiod response in corn are at least partly distinct than those believed to control photoperiod response in model plant species such as Arabidopsis (Mustard Weed) and rice. Future studies to pinpoint specific genes involved in the photoperiod response, however, will be necessary to draw definitive conclusions. The results of these future studies should lead to a better understanding of the extent of shared genetic pathways among distinct plant species and provide insights into how such pathways evolve. Ultimately this knowledge could have significant implications for agricultural species around the world.

“Corn is obviously an important crop, and geneticists and plant breeders are always looking for ways to improve it,” said Mark Johnston, Editor-in-Chief of the journal GENETICS. “This research may help us coax even more production out of this ‘a-maize-ing’ plant.”

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | Newswise Science News
Further information:
http://www.cmu.edu
http://www.genetics.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>