Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantifying corn rootworm damage

11.12.2012
Every year farmers spend a lot of money trying to control corn rootworm larvae, which are a significant threat to maize production in the United States and, more recently, in Europe. University of Illinois researchers have been working on validating a model for estimating damage functions.

Nicholas Tinsley, a doctoral candidate in crop sciences, has refined a model developed in 2009 by researchers at the University of Wisconsin and in Brescia, Italy, to describe the relationship between root injury caused by these pests and yield loss. He used the equivalent of 19 years of data collected by personnel from the Insect Management and Insecticide Evaluation Program in the U of I Department of Crop Sciences.

"Every year we evaluate a number of different management tactics for corn rootworm; these include soil insecticides and Bt traits," Tinsley explained. "We do that at a number of different locations on university research farms."

Tinsley took more than 7,000 data points from field crop insect management trials at Urbana, Perry, Monmouth, and DeKalb for 2005-2011. These trials measured root injury on a 0-3 node-injury scale and mechanically harvested the center two rows of each plot after the crop reached maturity to calculate yield. The results suggested that yield was reduced by 15 percent for each node of roots lost.

Two components had a statistically significant effect variance in the data–location and experimental error. Year had no significant effect.

Tinsley attributes the location effect to differences in weather characteristics and in soil type. "The larva doesn't really burrow through the soil, it exploits existing soil pores. If you have smaller soil pores, it's not able to navigate through the soil and find those roots very well," he said.

The large experimental error indicates that a significant amount of the variability remains unexplained. Tinsley said that this is not surprising considering that yield and proportional yield loss in the experiments varied considerably, probably due to differences among hybrids in yield potential and response to environmental conditions. Other factors that may have contributed to the variability include planting date, planting population, crop emergence, moisture at harvest, and management tactics.

"This not a model that a farmer can use to say, 'What is my yield loss going to be like this year?'" said Tinsley. "You just don't know what some of these things that are affecting the error are going to do."

The model may, however, be useful to help economists to estimate the effect of corn rootworm. "That's when a model like this can become really handy," he continued.

Tinsley said that further directions for this research include developing collaborations with other states. "If we extend to the western Corn Belt where it may be drier, we might start to see differences between two different regions in the relationship," he said.

Another direction is to explicitly model heat stress and moisture stress into the model, perhaps as a covariate. Such an analysis would look at the effects of combinations of factors.

"For example, if I have one node of roots destroyed but I have 10 inches of moisture stress, what's going to happen as compared to what happens if I have one node of root injury but no moisture stress," he explained.

He noted that many studies have demonstrated that often, when there is neither moisture stress nor excessive heat stress, the injury from corn rootworm does not result in significant yield loss.

Another factor to consider is lodging, when plants with root injury fall over. Lodged plants are very difficult to harvest.

"Under certain circumstances, you can have not very much root injury but a lot of lodging and big yield losses," Tinsley said. "Under other circumstances, you can have what seems to be a lot of root injury but if there are no big storms and you don't have any lodging, there may be no yield loss." Future collaborations in the development of this damage function may include lodging in the model.

The article, "The validation of a nested error component model to estimate damage cause by corn rootworm larvae," was published in Journal of Applied Entomology, which is available online at http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0418.2012.01736.x/abstract. Ronald Estes and Michael Gray, also in the Department of Crop Sciences, are co-authors.

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>