Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantifying corn rootworm damage

Every year farmers spend a lot of money trying to control corn rootworm larvae, which are a significant threat to maize production in the United States and, more recently, in Europe. University of Illinois researchers have been working on validating a model for estimating damage functions.

Nicholas Tinsley, a doctoral candidate in crop sciences, has refined a model developed in 2009 by researchers at the University of Wisconsin and in Brescia, Italy, to describe the relationship between root injury caused by these pests and yield loss. He used the equivalent of 19 years of data collected by personnel from the Insect Management and Insecticide Evaluation Program in the U of I Department of Crop Sciences.

"Every year we evaluate a number of different management tactics for corn rootworm; these include soil insecticides and Bt traits," Tinsley explained. "We do that at a number of different locations on university research farms."

Tinsley took more than 7,000 data points from field crop insect management trials at Urbana, Perry, Monmouth, and DeKalb for 2005-2011. These trials measured root injury on a 0-3 node-injury scale and mechanically harvested the center two rows of each plot after the crop reached maturity to calculate yield. The results suggested that yield was reduced by 15 percent for each node of roots lost.

Two components had a statistically significant effect variance in the data–location and experimental error. Year had no significant effect.

Tinsley attributes the location effect to differences in weather characteristics and in soil type. "The larva doesn't really burrow through the soil, it exploits existing soil pores. If you have smaller soil pores, it's not able to navigate through the soil and find those roots very well," he said.

The large experimental error indicates that a significant amount of the variability remains unexplained. Tinsley said that this is not surprising considering that yield and proportional yield loss in the experiments varied considerably, probably due to differences among hybrids in yield potential and response to environmental conditions. Other factors that may have contributed to the variability include planting date, planting population, crop emergence, moisture at harvest, and management tactics.

"This not a model that a farmer can use to say, 'What is my yield loss going to be like this year?'" said Tinsley. "You just don't know what some of these things that are affecting the error are going to do."

The model may, however, be useful to help economists to estimate the effect of corn rootworm. "That's when a model like this can become really handy," he continued.

Tinsley said that further directions for this research include developing collaborations with other states. "If we extend to the western Corn Belt where it may be drier, we might start to see differences between two different regions in the relationship," he said.

Another direction is to explicitly model heat stress and moisture stress into the model, perhaps as a covariate. Such an analysis would look at the effects of combinations of factors.

"For example, if I have one node of roots destroyed but I have 10 inches of moisture stress, what's going to happen as compared to what happens if I have one node of root injury but no moisture stress," he explained.

He noted that many studies have demonstrated that often, when there is neither moisture stress nor excessive heat stress, the injury from corn rootworm does not result in significant yield loss.

Another factor to consider is lodging, when plants with root injury fall over. Lodged plants are very difficult to harvest.

"Under certain circumstances, you can have not very much root injury but a lot of lodging and big yield losses," Tinsley said. "Under other circumstances, you can have what seems to be a lot of root injury but if there are no big storms and you don't have any lodging, there may be no yield loss." Future collaborations in the development of this damage function may include lodging in the model.

The article, "The validation of a nested error component model to estimate damage cause by corn rootworm larvae," was published in Journal of Applied Entomology, which is available online at Ronald Estes and Michael Gray, also in the Department of Crop Sciences, are co-authors.

Susan Jongeneel | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
21.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>