Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting the sustainability of UK wheat production

22.02.2011
Scientists at The University of Nottingham are to play a key role in a new seven million pound research programme to help maintain the world’s production of wheat - by increasing the diversity of traits available in wheat via a comprehensive pre-breeding programme. It will be the first study of its kind in the UK for 20 years.

At a time when the world is facing a growing global population and environmental change the project will be important to ensure the sustainability of wheat production in the UK and beyond.

To meet this challenge the Biotechnology and Biological Sciences Research Council (BBSRC) has brought together a consortium of the UK’s leading scientists in wheat genetics and trait analysis to underpin and enhance wheat breeding activities here in the UK and internationally. The foundation of the programme is based upon three areas of research to generate new diverse genetic variation.

Experts in the School of Biosciences will form part of this nationwide consortium involving the John Innes Centre, the University of Bristol, the National Institute of Agricultural Botany (NIAB) and Rothamsted Research.

Wheat breeders in the UK and throughout the world are working on new varieties that can meet the challenges of food production in the 21stt century. However, due to modern breeding practises there is not sufficient genetic variation in modern wheat varieties to obtain the increases in yield required to meet demand, climate change or environmental requirements - such as heat and drought tolerance, water use efficiency and nutrient use efficiency. The introduction of new genetic variation into wheat, for breeders to exploit, is therefore of critical importance for global food production.

Ian King, Professor of Cereal Genomics in the Department of Plant and Crop Sciences, said: “The world’s population is set to increase from seven to nine billion by 2040 to 2050 and it is predicted that we will have to produce 70 per cent more food than we do at present - just to maintain our present level of nutrition - which already includes one billion malnourished people and a further 100 million at near starvation level.

“Eleven per cent of the earth’s surface is presently used for crop production, with a further 22 per cent used for grazing animals. Of the remainder of the earth’s surface only an additional 10 per cent is suitable for relatively low levels of production. Thus the increase in food production needs to be generated from the same amount of land area that we already farm. One way for this to be achieved is through the production of new high yielding plant varieties that are adapted to global warming and environmentally friendly farming practises that result in less pollution (e.g. reduced fertiliser input).”

Six hundred million tonnes of wheat is produced every year – it is second only to rice in total tonnage used for food in the world. Wheat breeders require genetic variations for target traits, such as resistance to disease to develop new superior high yielding adapted wheat varieties.

One of these areas of research is being led by the husband and wife team of Professor Ian and Dr Julie King. Professor and Dr King are world leaders in transferring genetic variation and diversity into crop species from their distant relatives. Their main emphasis will be in transferring variation into wheat from a large number of its distant relatives including species such as cultivated rye and Thinopyrum bessarabicum, a species which grows in sand dunes and is highly salt tolerant. The wild relatives of wheat are of particular importance as they provide a vast and largely untapped source of genetic variation for most if not all agronomically important traits.

Dr John Foulkes, Associate Professor of Crop Science in the Department of Plant and Crop Sciences, and an expert in the physiological and genetic analysis of yield potential and resource-use efficiency traits in wheat and Dr Erik Murchie, a lecturer in crop physiology, will be looking at biomass production and nutrient use efficiency - how to increase biomass productivity and the amount of grain yield that plants produce for each kilo of nutrient available to the plant.

Dr Foulkes said: “In collaboration with colleagues at Rothamsted Research, our research will screen a wide range of novel wheat genetic resources developed within the Consortium in field experiments to identify lines with enhanced biomass and provide understanding of the biological basis of the key traits underlying genetic variation in biomass, e.g. light interception and photosynthetic efficiency. High wheat yields are currently dependent on large inputs of fertilizer nitrogen, which is expensive, and contributes greenhouse gas emissions associated with global warming impact. Developing wheat lines which give high yields with reduced nitrogen fertilizer inputs is therefore a priority.”

The consortium will also be working with collaborators throughout the world in India, Australia, the US, France and Mexico.

Dr Celia Caulcott, Director of Innovation and Skills, BBSRC said: “We are delighted that this group of researchers has considered at the earliest point how to ensure that opportunities are immediately taken to translate their work into products that have both social and economic impact in the UK. Having the lines of communication firmly established at this stage offers a great vehicle for exchange of knowledge, ideas and technology as this project progresses.”

The University of Nottingham has a broad research portfolio but has also identified and badged 13 research priority groups in which a concentration of expertise, collaboration and resources create significant critical mass.

Key research areas at Nottingham include energy, drug discovery, global food security, biomedical imaging, advanced manufacturing, integrating global society, operations in a digital world, and science, technology & society. Through these groups, Nottingham researchers will continue to make a major impact on global challenges.

Lindsay Brooke | alfa
Further information:
http://www.nottingham.ac.uk
http://www.nottingham.ac.uk/news/pressreleases/2011/february/wheatsustainability.aspx

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>