Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting the sustainability of UK wheat production

22.02.2011
Scientists at The University of Nottingham are to play a key role in a new seven million pound research programme to help maintain the world’s production of wheat - by increasing the diversity of traits available in wheat via a comprehensive pre-breeding programme. It will be the first study of its kind in the UK for 20 years.

At a time when the world is facing a growing global population and environmental change the project will be important to ensure the sustainability of wheat production in the UK and beyond.

To meet this challenge the Biotechnology and Biological Sciences Research Council (BBSRC) has brought together a consortium of the UK’s leading scientists in wheat genetics and trait analysis to underpin and enhance wheat breeding activities here in the UK and internationally. The foundation of the programme is based upon three areas of research to generate new diverse genetic variation.

Experts in the School of Biosciences will form part of this nationwide consortium involving the John Innes Centre, the University of Bristol, the National Institute of Agricultural Botany (NIAB) and Rothamsted Research.

Wheat breeders in the UK and throughout the world are working on new varieties that can meet the challenges of food production in the 21stt century. However, due to modern breeding practises there is not sufficient genetic variation in modern wheat varieties to obtain the increases in yield required to meet demand, climate change or environmental requirements - such as heat and drought tolerance, water use efficiency and nutrient use efficiency. The introduction of new genetic variation into wheat, for breeders to exploit, is therefore of critical importance for global food production.

Ian King, Professor of Cereal Genomics in the Department of Plant and Crop Sciences, said: “The world’s population is set to increase from seven to nine billion by 2040 to 2050 and it is predicted that we will have to produce 70 per cent more food than we do at present - just to maintain our present level of nutrition - which already includes one billion malnourished people and a further 100 million at near starvation level.

“Eleven per cent of the earth’s surface is presently used for crop production, with a further 22 per cent used for grazing animals. Of the remainder of the earth’s surface only an additional 10 per cent is suitable for relatively low levels of production. Thus the increase in food production needs to be generated from the same amount of land area that we already farm. One way for this to be achieved is through the production of new high yielding plant varieties that are adapted to global warming and environmentally friendly farming practises that result in less pollution (e.g. reduced fertiliser input).”

Six hundred million tonnes of wheat is produced every year – it is second only to rice in total tonnage used for food in the world. Wheat breeders require genetic variations for target traits, such as resistance to disease to develop new superior high yielding adapted wheat varieties.

One of these areas of research is being led by the husband and wife team of Professor Ian and Dr Julie King. Professor and Dr King are world leaders in transferring genetic variation and diversity into crop species from their distant relatives. Their main emphasis will be in transferring variation into wheat from a large number of its distant relatives including species such as cultivated rye and Thinopyrum bessarabicum, a species which grows in sand dunes and is highly salt tolerant. The wild relatives of wheat are of particular importance as they provide a vast and largely untapped source of genetic variation for most if not all agronomically important traits.

Dr John Foulkes, Associate Professor of Crop Science in the Department of Plant and Crop Sciences, and an expert in the physiological and genetic analysis of yield potential and resource-use efficiency traits in wheat and Dr Erik Murchie, a lecturer in crop physiology, will be looking at biomass production and nutrient use efficiency - how to increase biomass productivity and the amount of grain yield that plants produce for each kilo of nutrient available to the plant.

Dr Foulkes said: “In collaboration with colleagues at Rothamsted Research, our research will screen a wide range of novel wheat genetic resources developed within the Consortium in field experiments to identify lines with enhanced biomass and provide understanding of the biological basis of the key traits underlying genetic variation in biomass, e.g. light interception and photosynthetic efficiency. High wheat yields are currently dependent on large inputs of fertilizer nitrogen, which is expensive, and contributes greenhouse gas emissions associated with global warming impact. Developing wheat lines which give high yields with reduced nitrogen fertilizer inputs is therefore a priority.”

The consortium will also be working with collaborators throughout the world in India, Australia, the US, France and Mexico.

Dr Celia Caulcott, Director of Innovation and Skills, BBSRC said: “We are delighted that this group of researchers has considered at the earliest point how to ensure that opportunities are immediately taken to translate their work into products that have both social and economic impact in the UK. Having the lines of communication firmly established at this stage offers a great vehicle for exchange of knowledge, ideas and technology as this project progresses.”

The University of Nottingham has a broad research portfolio but has also identified and badged 13 research priority groups in which a concentration of expertise, collaboration and resources create significant critical mass.

Key research areas at Nottingham include energy, drug discovery, global food security, biomedical imaging, advanced manufacturing, integrating global society, operations in a digital world, and science, technology & society. Through these groups, Nottingham researchers will continue to make a major impact on global challenges.

Lindsay Brooke | alfa
Further information:
http://www.nottingham.ac.uk
http://www.nottingham.ac.uk/news/pressreleases/2011/february/wheatsustainability.aspx

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>