Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor hopes to help high elevation pines grow

21.07.2009
Thread-like fungi that grow in soils at high elevations may play an important role in restoring whitebark and limber pine forests in Canada. Montana State University professor Cathy Cripps is looking for ways to use fungi to help pine seedlings get a strong start.

Cripps' is working with resource managers and visitor relations staff from Waterton Lakes National Park (WLNP). She is part of a project that aims to restore fire to the national park, reduce the impact of noxious weeds and restore disturbed sites to native vegetation, including whitebark and limber pine. The pines have declined from 40 to 60 percent across their range, and when the trees die, the fungi associated with them also die.

"Cathy's research on fungi and their importance to these pines at various life stages has led us to believe that we may no longer have the necessary fungi in our soils because of the long decline of both pines," said Cyndi Smith, conservation biologist at WLNP.

Both pines are dying from a combination of an introduced disease (white pine blister rust), mountain pine beetle, fire suppression and a warmer climate.

Cripps' role in the project is to identify native mycorrhizal fungi--fungi associated with plant roots. Specifically, she is looking for mycorrhizal fungi that associate with whitebark and limber pines. The fungi are important in the establishment and survival of the trees.

"Mycorrhizae make the trees healthier and more able to resist disease, insects and drought," said Cripps.

Mycorrhizal fungi grow on the roots of 90 percent of plants, according to Cripps.

"Mycorrhizae extend the plants' root system and can get into places in the soil that the root system can't access," said Cripps.

Mycorrhizae take in, and share with the plant, nutrients such as phosphorous and nitrogen. The fungi can improve drought tolerance by delivering additional water to the trees. The trees leak sugars produced during photosynthesis that feed the fungus.

Finding the fungi isn't easy. While some fungi produce mushrooms, many of the species Cripps hunts live entirely underground. She looks for small cracks in the soil where the fungus may have pushed the soil up, or places where small mammals have dug, attracted by the scent of the fungi's underground fruiting bodies.

Cripps hikes in dry forests a few days after a rain. Since the fungi she is interested in associate with high elevation trees, she must wait until mid-to-late summer when the snow has melted from the mountains.

"It's painstaking work," said Cripps. "There is a lot of walking and searching for almost unnoticeable signs."

Cripps has surveyed mycorrhizae from Yellowstone through Waterton Lakes National Park and into Banff, Canada, and has found related fungi associated with these pines throughout the northern Rockies. These mycorrhizal fungi are specific to five-needled pines, including whitebark and limber pines.

When she finds the fungi, she collects them in small plastic boxes to take back to her lab at MSU. Cripps grows new fungi from the ones she collected and adds it to the soil of whitebark pine seedlings in the greenhouse.

The seedlings with fungi in their soil become greener and more robust than the seedlings without the fungi, according to Cripps' unpublished results.

The next step is to determine which fungi species are most effective for larger scale use.

"It's a slow process because these seedlings grow so slowly," said Cripps.

Cripps doesn't have the luxury of taking her time on this project, regardless of the trees' growth rate.

Cripps, along with other researchers and land managers involved in the Waterton Lakes project hope to add fungi from Cripps lab to 1,500 whitebark pines seedlings they will plant this fall over 7 to 10 acres.

"All of the sudden the interest just blossomed with this grant," said Cripps. "It will be a race to the fall."

More information about restoring whitebark pine ecosystems: http://www.whitebarkfound.org/

Cathy Cripps at (406) 994.5226 or ccripps@montana.edu

Cathy Cripps | EurekAlert!
Further information:
http://www.montana.edu

Further reports about: Mycorrhizae WLNP limber pines native vegetation pine forests pines root system

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>