Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing Soil Erosion in Continuous Corn

14.01.2009
With the rising use of residue from corn crops in producing cellulosic ethanol, new methods of tillage and careful application of fertilizer are needed to prevent soil erosion.

With recent increase in the cost of energy and subsequent explorations into alternative energy sources, the increased harvest of corn residue for cellulosic ethanol production is likely in the future.

This may be especially true in fields where corn is grown continuously, in part because perennially high residue amounts favor annual harvests, and also because corn residue left on the soil surface is a source of inoculum for corn diseases.

Removal of corn residue, however, may require changes in tillage for increased efficiency and protection against soil erosion. Yet, the amount of N fertilizer needed to optimize corn grain yield can vary among tillage systems due to differences in soil N cycling. Thus, understanding the response of continuous corn to fertilizer N when residue is removed in different tillage systems will be necessary for optimizing N use in such systems.

A recent article in the November-December issue of Agronomy Journal summarized the results of field experiments conducted during 2006 and 2007 at four locations in Illinois, which focused on understanding how residue removal and tillage system affect the response of continuous corn to N fertilization. The research was also presented in New Orleans, LA at the American Society of Agronomy annual meeting in November 2007.

On dark prairie-derived soils with abundant rainfall, the authors, Jeffrey Coulter of the University of Minnesota and Emerson Nafziger of the University of Illinois, observed that the economically optimum N fertilizer rate (EONR) for continuous corn was reduced by 13% with full or partial removal of corn residue when compared to no removal of residue. This was consistent for both chisel plow and no-tillage systems. Averaged across N fertilizer rates in these environments, corn grain yield was similar between no-till and chisel plow tillage systems with full removal of residue. However, with partial and no removal of residue, yields were 5 and 12% greater with the chisel plow than with the no-tillage system, respectively.

“Higher yields with tillage when residue was returned in these environments were likely due to improved seedling growth resulting from warmer soil temperatures,” said Coulter.

These results show that on productive soils with adequate rainfall, removal of residue has, at least in the short term, the potential to lower N fertilizer requirements. However, the authors warn that this advantage needs to be balanced against the need to retain adequate residue to maintain soil C and protect against erosion. While no-till continuous corn worked well with full removal of residue in these highly productive environments in the central Corn Belt, Coulter says that “no-till continuous corn may be less applicable in the northern Corn Belt when residue is removed because of heavier soils and a shorter growing season.”

In his new role as a corn cropping systems agronomist in Minnesota, Coulter believes that strip-till continuous corn might be a viable alternative to no-till when residue is removed. Research is ongoing at the Universities of Minnesota and Illinois to identify best management practices with regard to economic and environmental sustainability when corn residue is removed in corn-intensive cropping systems.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/100/6/1774.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org
http://agron.scijournals.org
http://agron.scijournals.org/cgi/content/abstract/100/6/1774

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>