Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing Soil Erosion in Continuous Corn

14.01.2009
With the rising use of residue from corn crops in producing cellulosic ethanol, new methods of tillage and careful application of fertilizer are needed to prevent soil erosion.

With recent increase in the cost of energy and subsequent explorations into alternative energy sources, the increased harvest of corn residue for cellulosic ethanol production is likely in the future.

This may be especially true in fields where corn is grown continuously, in part because perennially high residue amounts favor annual harvests, and also because corn residue left on the soil surface is a source of inoculum for corn diseases.

Removal of corn residue, however, may require changes in tillage for increased efficiency and protection against soil erosion. Yet, the amount of N fertilizer needed to optimize corn grain yield can vary among tillage systems due to differences in soil N cycling. Thus, understanding the response of continuous corn to fertilizer N when residue is removed in different tillage systems will be necessary for optimizing N use in such systems.

A recent article in the November-December issue of Agronomy Journal summarized the results of field experiments conducted during 2006 and 2007 at four locations in Illinois, which focused on understanding how residue removal and tillage system affect the response of continuous corn to N fertilization. The research was also presented in New Orleans, LA at the American Society of Agronomy annual meeting in November 2007.

On dark prairie-derived soils with abundant rainfall, the authors, Jeffrey Coulter of the University of Minnesota and Emerson Nafziger of the University of Illinois, observed that the economically optimum N fertilizer rate (EONR) for continuous corn was reduced by 13% with full or partial removal of corn residue when compared to no removal of residue. This was consistent for both chisel plow and no-tillage systems. Averaged across N fertilizer rates in these environments, corn grain yield was similar between no-till and chisel plow tillage systems with full removal of residue. However, with partial and no removal of residue, yields were 5 and 12% greater with the chisel plow than with the no-tillage system, respectively.

“Higher yields with tillage when residue was returned in these environments were likely due to improved seedling growth resulting from warmer soil temperatures,” said Coulter.

These results show that on productive soils with adequate rainfall, removal of residue has, at least in the short term, the potential to lower N fertilizer requirements. However, the authors warn that this advantage needs to be balanced against the need to retain adequate residue to maintain soil C and protect against erosion. While no-till continuous corn worked well with full removal of residue in these highly productive environments in the central Corn Belt, Coulter says that “no-till continuous corn may be less applicable in the northern Corn Belt when residue is removed because of heavier soils and a shorter growing season.”

In his new role as a corn cropping systems agronomist in Minnesota, Coulter believes that strip-till continuous corn might be a viable alternative to no-till when residue is removed. Research is ongoing at the Universities of Minnesota and Illinois to identify best management practices with regard to economic and environmental sustainability when corn residue is removed in corn-intensive cropping systems.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/100/6/1774.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org
http://agron.scijournals.org
http://agron.scijournals.org/cgi/content/abstract/100/6/1774

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>