Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prestorage conditioning, diphenylamine improve condition of 'honeycrisp' apple

27.03.2014

Scientists determine methods for improving resistance to controlled-atmosphere-related injury

Since the introduction of 'Honeycrisp' apples in 1991, the variety has become a consumer favorite for its unusual texture and delicious flavor. Honeycrisp has increased in popularity with growers as well; Michigan, New York, and Washington boast significant numbers of 'Honeycrisp' orchards.

As the growing area dedicated to the variety has grown, the need to find better methods for improving storage performance has become more important to growers. Because 'Honeycrisp' is very sensitive to low temperatures and can be damaged by controlled-atmosphere conditions, long-term storage of the apples can be challenging.

Carolina Contreras and Randy Beaudry from the Department of Horticulture at Michigan State University and Nihad Alsmairat from the Department of Horticulture and Crop Science at the University of Jordan published a study in HortScience that revealed some important information for apple producers. "Our work was conducted in two phases," Beaudry explained.

"The first phase was designed to determine whether 'Honeycrisp' apples were susceptible to controlled-atmosphere injury, to determine the relative influence of O2 and CO2, and to identify a treatment combination that would reliably generate symptoms so that control measures could be subsequently evaluated." In the second phase, the scientists evaluated options for avoiding injury to 'Honeycrisp' during controlled-atmosphere storage. Fruit were conditioned at 3º C, 10º C, and 20º C for 5 days and then exposed to one of nine different storage treatments.

In the first experiment, 'Honeycrisp' exhibited a high sensitivity to both low oxygen and elevated CO2 levels. "We found that the controlled-atmospheres used induced injuries typical of those associated with CO2 (i.e., small brown lesions and associated lens-shaped cavities) and also larger dark brown lesions with often irregular margins," the authors said. "The extent of the injury was higher for those fruit in an atmosphere with elevated CO2 for each level of O2."

Subsequent experiments took place over 3 years, during which the researchers reproduced the controlled-atmosphere (CA) injury from the preliminary study with varied intensity. Although the researchers observed high variability between orchards and years, they found two treatments that effectively controlled the CA injury. "We found that the brown lesions in the cortex were completely suppressed by DPA application, even when the prestorage conditioning temperature was 3º C," Beaudry said. "The incidence of cavities ranged from 0.1% to 0.3% under the same DPA treatment. On the other hand, the most affected treatment was 3/3 followed by 3/0, 21/0, and 21/ 0 plus 1-MCP."

The authors noted that, while there is good progress toward determining optimal storage recommendations for 'Honeycrisp' additional studies are still warranted. "For instance, although the 7-day prestorage conditioning treatments provided some protection against the development of CA injury, shorter durations should be investigated to prevent quality loss resulting from excessive ripening, which could cause increased skin greasiness and undesirable flavor profile."

The study includes additional recommendations for handling 'Honeycrisp' in prestorage conditions.

###

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/49/1/76.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!

Further reports about: ASHS HortScience Horticultural Science conditioning conditions injury lesions levels recommendations skin variety

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>