Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Pressure is on to Eradicate Deadly Organism Affecting Citrus Crops Worldwide

13.08.2009
Citrus Huanglongbing (HLB) – also known as “citrus greening” - is a serious bacterial disease that is adversely affecting citrus groves worldwide. The disease has already been responsible for the significant decrease in citrus production in many countries in Asia, Africa, the Arabian Peninsula, and Brazil. New technology has allowed for the DNA of the HLB bacterium to be recently sequenced, an important step toward starting the process of genetically engineering trees to resist the disease.

Americans may find a glass of their favorite breakfast staple, orange juice, hard to come by in the next few years if a certain bacteria has its way. According to a spokesperson with the Florida Citrus Mutual, Florida’s orange crop could shrink within five years by about 12%, to 140 million 90-pound boxes, as the state battles the tree-killing disease known as the “Citrus Greening Disease,” or Citrus Huanglongbing.

Citrus Huanglongbing (HLB) – also known as “citrus greening” - is a serious bacterial disease that is adversely affecting citrus groves worldwide. The disease has already been responsible for the significant decrease in citrus production in many countries in Asia, Africa, the Arabian Peninsula, and Brazil. HLB disease, spread by insect called a citrus psyllid, has no known cure , affects all of the main types of citrus, and can ultimately kill the trees. If unstopped, the potential economic impact to the multi-billion dollar citrus industry of the U.S. and the rest of the world could be devastating.

HLB was first detected in Florida in 2005. The Sunshine State’s citrus industry is now mounting a multi-million dollar research effort to try and overcome citrus greening, as the increasing spread of HLB disease is threatening the future of this sector in the U.S.. With commercial citrus production across the entire state now affected by citrus greening, the Florida citrus industry said it plans to carry out extensive research to find short and long-term solutions to the disease.

The 2008-2009 harvests, which ended in July, is forecasted at 159.6 million boxes, down from 170.2 million last year. Growers are awaiting a September tree census to determine how many acres of citrus groves have been lost to citrus greening. The disease was first discovered after a parade of hurricanes battered the groves, and has spread to all thirty-two of Florida’s citrus-growing counties.

At present, the only methods available to curtail citrus greening involve using pesticide to kill the insects, hiring more scouts to inspect the groves, and immediately removing infected trees.

According to Molecular Biologist, Nathan P. Lawrence, Ph.D, Vice President of Marketing at Pressure BioSciences, Inc., researchers have recently sequenced the DNA of the HLB bacterium, an important step toward starting the process of genetically engineering trees to resist the disease. Dr. Lawrence believes a novel process called Pressure Cycling Technology (PCT) may have played a role in helping to extract high quality DNA from the bacterium.

Dr. Lawrence commented, “New sample preparation technologies enable scientists to extract biomolecules related to agriculture and soil-based pathogens more quickly, accurately, and efficiently than ever before. PCT employs cycles of hydrostatic pressure between ambient and ultra-high levels (up to 35,000 psi and greater) to safely, reproducibly, and efficiently release DNA, RNA, and proteins from food, plant, microbial, and other biological samples within minutes, allowing for more rapid and accurate downstream testing.”

Scientists from three separate U.S. Department of Agriculture (USDA) laboratories presented data generated through the use of the Company’s patented, cutting-edge pressure cycling technology (“PCT”) at the American Phytopathological Society’s (“APS”) 2009 Annual Meeting, held August 1-5, 2009, at the Oregon Convention Center in Portland, Oregon. The presentations related to innovative plant pathology studies of various pathogens that can significantly and adversely affect important food crops, such as strawberries, wheat, peas, lentil, barley, canola, and especially citrus.

Dr. Lawrence said, “We are committed to working with plant pathologists in the U.S. and abroad to help improve their understanding of this very serious citrus disease. We are therefore very pleased that PCT combined with our patent-pending ProteoSolve-SB buffer has been reported to extract yields of DNA from cultured HLB that greatly exceed other existing methods.”

Dr. Lawrence continued: “We are also pleased that PCT is being used by a USDA group to extract DNA from fungi in soil that infects wheat and other important crops, and that another USDA group is now evaluating PCT to extract DNA from fungi in soil that infects strawberries. These findings help support the Company’s goal of developing multiple PCT uses in the agricultural area in an effort to help to make PCT the method of choice for the standardization of sample preparation for agricultural applications.”

Know Before You Grow

“Being able to identify a pathogen in existing plants and soil based on its DNA before planting can alert growers to the high risk of failure before they plant, thus helping to avoid failed crops and even potentially financial ruin”, said Dr. Lawrence.

“The problem of contaminated soil and infected plants and trees is not only affecting oranges but other fruits and agricultural products, such as strawberries and wheat – pretty much any staple on any diet on a global scale,” says Dr. Lawrence. “The goal is to thwart global starvation by identifying problem areas, curbing cross contamination, and eradicating the problem before the losses become catastrophic.”

Dr. Norman Schaad (USDA-ARS, Ft. Detrick, MD) presented data on the ability of PCT, when used concomitantly with the ProteoSolve-SB buffer, to extract a yield of double-stranded HLB DNA that was at least 10 times greater than any other DNA extraction method tested. Dr. Schaad also stated that the extracted DNA was of very high quality, and that this should support the effective sequencing of the genome of the HLB bacterium. Genome sequencing is a very important step in gaining a better understanding of a disease and potential disease resistant mechanisms.

Another USDA team, this one including Dr. K.L. Schroeder and colleagues (USDA-ARS, Pullman, WA), reported on the incidence and distribution of Rhizoctonia (causes “damping off”, or the death of seedlings in agriculture) and Pythium (causes “root rot”) fungi species in the soil of wheat, pea, lentil, barley, and canola fields. Fungal DNA was extracted from contaminated soil using PCT, their lab’s standard sample preparation method.

Another team that included Dr. G. J. Bilodeau (USDA-ARS, Salinas, CA) reported on the development of improved tests for the fungus Verticillium dahliae, a pathogen that can cause significant losses in highly susceptible crops such as strawberry. Dr. Bilodeau stated that V. dahliae presents challenges for disruption and extraction of intact DNA, and that he and his colleagues were evaluating different DNA extraction kits, combined with processing by PCT.

Growers are optimistic that the industry can survive if they can control the psyllids, the insect that spreads HLB, and remove infected trees early enough to hang on until resistant trees are available, something that could take a decade. To that end, the recent USDA findings indicate that PCT can be very useful in the laboratory analysis of HLB disease, and consequently may play an important role in the development of new procedures for diagnosing and controlling HLB. “Such advances must be brought to market quickly”, commented Dr. Lawrence, “as we believe that this disease has the potential to significantly adversely affect the citrus industry worldwide.”

Janet Vasquez | Newswise Science News
Further information:
http://www.pressurebiosciences.com

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>