Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting tree mortality

10.06.2015

A National Center for Ecological Analysis and Synthesis working group study analyzes a variety of factors contributing to forest die-offs

A combination of drought, heat and insects is responsible for the death of more than 12 million trees in California, according to a new study from UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS). Members of the NCEAS working group studying environmental factors contributing to tree mortality expect this number to increase with climate change.


The western US has been a hotspot for forest die-offs such as this one in Colorado.

Courtesy of William M. Ciesla, Forest Health Management

The study is the first of its kind to examine the wide spectrum of interactions between drought and insects. Lead author William Anderegg, a postdoctoral researcher at the Princeton Environmental Institute, and his co-authors first devised a framework to look at the effects that each stressor can have on tree mortality and then examined interactions among them. The researchers' findings appear in New Phytologist.

'We wanted to be able to get a sense of how these die-off patterns will shift with climate change,' explained study co-author Naomi Tague, an associate professor at UCSB's Bren School of Environmental Science & Management. 'Are there huge forests that will be at higher risk of dying sooner?'

The western U.S. has been a hotspot for forest die-offs. Local economies in states like California and Colorado are highly dependent on the nature-based tourism and recreation provided by forests, which offer a scenic backdrop to the skiing, fishing and backpacking opportunities that draw so many people to live and play in the West. But lingering drought, rising temperatures and outbreaks of tree-killing pests such as bark beetles have spurred an increase in widespread tree mortality -- especially within the past decade.

'Very often both drought and insects together are responsible for tree mortality,' explained Anderegg, 'but there are several good examples of trees dying because of one impact and not the other. We've worked to detail the spectrum of interactions between drought and insects and examine how they go hand in hand to affect tree die-offs.'

Forest mortality has also been shown to impact everything from real estate to clean water. Property values in Colorado plummeted after swaths of coniferous forests were damaged by pine beetle infestations. Water purification services provided by forests continue to be disrupted when hectares of forests are lost to pests and drought. What's more, forest die-off events are projected to increase in frequency and severity in the coming decades.

'If we want to account for forest die-off events at local and global scales, we need some way of estimating how often they are likely to occur,' Tague said. 'We're putting together the pieces of how climate conditions can affect that mortality and how to identify the specific stressors that cause it.'

The study's framework is a first step toward developing the tools that resource managers need to better predict the impacts of climate change on forests. Scientists and forest specialists are now tasked not only with determining what conditions prompt tree mortality but also how they will shape forested landscapes in the years to come. Being able to predict forest mortality in a changing climate is key to conservation and land use planning.

'Ultimately, forests are a critical part of western U.S. landscapes and state economies,' Anderegg said. 'They are also a canary in the coal mine for climate change. These massive forest die-offs that we are starting to see are a sign that climate change is already having major impacts in our backyard.'

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

Further reports about: NCEAS conditions forests insects interactions landscapes mortality pests spectrum tree mortality

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>