Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predators delay pest resistance to Bt crops

05.03.2014

Crops genetically modified with the bacterium Bt (Bacillus thuringiensis) produce proteins that kill pest insects. Steady exposure has prompted concern that pests will develop resistance to these proteins, making Bt plants ineffective.

Cornell research shows that the combination of natural enemies, such as ladybeetles, with Bt crops delays a pest’s ability to evolve resistance to these insecticidal proteins.

“This is the first demonstrated example of a predator being able to delay the evolution of resistance in an insect pest to a Bt crop,” said Anthony Shelton, a professor of entomology at Cornell University’s New York State Agricultural Experiment Station in Geneva, N.Y., and a co-author of the paper. Xiaoxia Liu, a visiting scientist from China Agricultural University who worked in the Shelton lab, is the lead author on the paper published in the journal PLoS One.

Bt is a soil bacterium that produces proteins that are toxic to some species of caterpillars and beetles when they are ingested, but have been proven safe to humans and many natural enemies, including predaceous ladybirds. Bt genes have been engineered into a variety of crops to control insect pests.

... more about:
»Agricultural »ISDN »crops »genes »insect »larvae »proteins »resistance »species

Since farmers began planting Bt crops in 1996 with 70 million hectares planted in the United States in 2012, there have been only three clear-cut cases in agriculture of resistance in caterpillars, and one in a beetle. “Resistance to Bt crops is surprisingly uncommon,” said Shelton.

To delay or prevent insect pests from evolving resistance to Bt crops, the U.S. Environmental Protection Agency promotes the use of multiple Bt genes in plants and the practice of growing refuges of non-Bt plants that serve as a reservoir for insects with Bt susceptible genes.

“Our paper argues there is another factor involved: the conservation of natural enemies of the pest species,” said Shelton. These predators can reduce the number of potentially resistant individuals in a pest population and delay evolution of resistance to Bt.

In the study, the researchers set up large cages in a greenhouse. Each cage contained Bt broccoli and refuges of non-Bt broccoli. They studied populations of diamondback moth (Plutella xylostella) larvae, a pest of broccoli, and their natural enemies, ladybird beetles (Coleomegilla maculata), for six generations.

Cages contained different combinations of treatments with and without predators, and with and without sprayed insecticides on the non-Bt refuge plants.  Farmers commonly spray insecticides on refuge plants to prevent loss by pests, but such sprays can kill predators and prey indiscriminately.

The results showed that diamondback moth populations were reduced in the treatment containing ladybird beetles and unsprayed non-Bt refuge plants. Also, resistance to Bt plants evolved significantly slower in this treatment. In contrast, Bt plants with no refuge were completely defoliated in treatments without ladybirds after only four to five generations, showing rapid development of resistance in the pests. In the treatment with sprayed non-Bt refuge plants and predators, diamondback moth populations were reduced, but the larvae more quickly evolved resistance to the Bt plants.

“These results demonstrate the effectiveness of Bt plants in controlling the pest population, the lack of effect of Bt on the predators and the role predators play in delaying resistance to Bt plants in the pest population,” said Shelton.

The study was funded by United States Department of Agriculture and the Special Research Projects for Developing Transgenic Plants in China. 

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Melissa Osgood | EurekAlert!
Further information:
http://mediarelations.cornell.edu/2014/03/04/predators-delay-pest-resistance-to-bt-crops/

Further reports about: Agricultural ISDN crops genes insect larvae proteins resistance species

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>