Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision Agriculture for Small Scale Farming Systems

10.10.2013
Raj Khosla, PhD, and other agronomists have demonstrated internationally that working closely with farmers can improve crop yields.

The principles are the same no matter the location: use the right input, at the right time, at the right place, and in the right amount. How those principles are applied varies from field to field, country to country and farmer to farmer, but almost always impacts outcomes.

Khosla will present “Precision Agriculture for Small Scale Farming Systems” on Wednesday, Nov. 6, 2013 at 9:30 AM. The presentation is part of the American Society of Agronomy, Crop Science Society of America, and the Soil Science Society of America Annual Meetings, Nov. 3-7 in Tampa, Florida. The theme of this year’s conference is “Water, Food, Energy, & Innovation for a Sustainable World” (https://www.acsmeetings.org/). Members of the media receive complimentary registration to the joint meetings.

According to Khosla, “precision agriculture is a grossly misunderstood field, due to its development over time in large scale farming systems. The principles and concepts of precision agriculture are not only for large farms using large equipment. They can be applied to a farm of 2 acres or 2,000 acres.” He prefers to call it “smart agriculture” or “appropriate agriculture.”

“The examples we have from Africa, Asia, and South America show impacts in improving yields even greater than that in the US,” says Khosla. In Zimbabwe, simple tactics like using current labor forces and harnessing good techniques tripled yields in one study.

“Global food security is a huge issue,” says Khosla. “Smart agriculture is very much a part of the solution, but it is not the only solution.”

If you would like a 1-on-1 interview with Dr. Khosla, contact Susan Fisk at the email above.

Susan V. Fisk | Newswise
Further information:
http://www.sciencesocieties.org

Further reports about: Farming Precision Small Molecule Soil Science agriculture

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>