Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prairie cordgrass: Highly underrated

27.06.2012
When D.K. Lee and Lane Rayburn, faculty members in the crop sciences department at the University of Illinois, talk about prairie cordgrass (Spartina pectinata) they have difficulty containing their enthusiasm. They are among the very few people doing research on this grass as a potential energy crop.
According to Lee, switchgrass has been studied extensively as a forage crop and a dedicated energy crop. Recently this research has been extended to big bluestem, indiangrass, and other native grasses. Prairie cordgrass has received comparatively little attention because, unlike the others, it is not a good forage crop. “The cow has a preference; this grass is coarse and not good for grazing,” Lee said.

However, as interest in energy crops and in feedstock production for cellulosic biofuels increases, prairie cordgrass is receiving more attention because it grows well on marginal land. “It likes environments that are too wet for row crop production.” Lee explained.

He and his colleagues in the Energy Biosciences Institute, of which the U of I is a partner, are giving prairie cordgrass this increased attention as a biofuel source plant.

Many conservationists are also interested in the grass. “One of the characteristics of this grass is that it has a strong rhizome and root system,” explained Lee. Thus, it is good for erosion control and conservation, particularly in riparian areas because it is a species that likes water.

Another important characteristic of Spartina pectinata is salt tolerance. Lee planted prairie cordgrass in west Texas in fields that could no longer be used for crop production because they had been irrigated with salty ground water. “It actually grew pretty well; the farmer was shocked,” he said. Soil salinity is a problem in much of the marginal land throughout the world.

It also has good cold tolerance. Although it is a warm-season grass, it starts growing in mid-March like a cool-season grass. Its growing season is longer than that of corn, allowing it to accumulate high biomass.

Rayburn said that what makes it perfect as a biomass grass is that it is a native species with no invasiveness issues associated with it. “If I’m going to work with an energy crop, I want to bring something in that, environmentally and ecologically, I don’t have to worry about,” he said.

“It’s a great plant,” added Rayburn. “We know how to control it, it gives good biomass, and it grows on marginal land.”

Lee and Rayburn wanted to know where the grass grows and whether it was all the same. Lee traveled over 10,000 miles around the country collecting more than 130 natural populations. He and his group then looked at the DNA and the ploidy level, which is the number of sets of chromosomes.

They found many differences. For example, the prairie cordgrass in South Dakota was mostly octoploid (eight sets of chromosomes) while the Illinois grass tended to be tetraploid (four sets). Then, to their surprise, they found a mixed-ploidy population comprising tetraploids and (previously unknown) hexaploids (six sets of chromosomes) at a single location in Illinois.

Lee said that, for biomass production, this newly discovered hexaploid is in the top five of his collection. “A lot of people want to have access to this thing, but I’m still keeping it in my house,” he said. The Energy Biosciences Institute is hoping to patent the variety. Lee’s ‘Savoy’ cultivar has recently been patented.

Rayburn said that finding the hexaploid “was like catching a snapshot of evolution.” The area where the hexaploid was found is a piece of Conservation Reserve Program (CRP) land that has not been farmed for 20 years, meaning that the polyploidy event occurred quite recently.

Rayburn and Lee describe their collaboration as “a perfect combination.” Lee is focusing on developing a better cultivar with good agronomic traits. Rayburn is interested in how the hexaploid evolved. “What he does helps me in my studies of how the plant evolved; what I do helps him in his studies on improving it,” said Rayburn, “and he’s fun to work with.”

The Energy Biosciences Institute, funded by the energy company BP, is a research collaboration that includes the University of Illinois, the University of California at Berkeley, and Lawrence Berkeley National Laboratory. It is dedicated to applying the biological sciences to the challenges of producing sustainable, renewable energy for the world.

The research is described in more detail in the following articles:
Kim, S.M., A.L. Rayburn, and D.K. Lee. 2010. “Genome Size and Chromosome Analysis in Prairie Cordgrass (Spartina pectinata L.).” Crop Science 50:2277-2282.

Kim, S.M., A.L. Rayburn, A. Parrish, and D.K. Lee. 2012. “Cytogeographic Distribution and Genome Size Variation in Prairie Cordgrass (Spartina pectinata Bosc ex Link).” Plant Molecular Biology Reporter (in press, online first).

Kim, S.M., A.L. Rayburn, A. Boe, and D.K. Lee. 2012. “Neopolyploidy in Spartina pectinata Link: 1. Morphological Analysis of Tetraploid and Hexaploid Plants in a Mixed Natural Population.” Plant Systematic and Evolution (in press, online first).

Kim, S.M., A.L. Rayburn, T. Voigt, A. Parrish and D.K. Lee. 2012. “Salinity effects on germination and plant growth of prairie cordgrass and switchgrass.” Bioenergy Research 5: 225-235.

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>