Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powered By Olive Stones? Turning Waste Stones Into Fuel

30.10.2008
Olive stones can be turned into bioethanol, a renewable fuel that can be produced from plant matter and used as an alternative to petrol or diesel.

This gives the olive processing industry an opportunity to make valuable use of 4 million tonnes of waste in olive stones it generates every year and sets a precedent for the recycling of waste products as fuels.

Researchers from the Universities of Jaén and Granada in Spain show how this can be achieved in a study published in the latest edition of the Society of Chemical Industry’s (SCI) Journal of Chemical Technology & Biotechnology.

“The low cost of transporting and transforming olives stones make them attractive for biofuels,” says researcher Sebastián Sánchez.

Bioethanol is increasingly used in cars, but its production from food crops such as corn is controversial because it uses valuable land resources and threatens food security. In addition, it makes use of only a small part of the whole crop. By contrast, extracting energy from olive stones uses food industry by-products.

The olive stone, produced in processing of olive oil and table olives, makes up around a quarter of the total fruit. It is rich in polysaccharides (cellulose and hemicellulose) that can be broken down into sugar and then fermented to produce ethanol.

“This research raises the possibility of using of olive stones, which would otherwise be wasted, in producing energy. In this way we can make use of the whole food crop,” says Sánchez.

The team pre-treated olive stones using high-pressure hot water (essentially a pressure cooker) then added enzymes which degrade plant matter and generate sugars. The hydrolysate obtained from this process was then fermented with yeasts to produce ethanol. Yields of 5.7kg of ethanol per 100kg of olive stones have been reached,

The quantities of stones produced are relatively small in comparison with other agricultural and forestry wastes. However, if similar principles were employed across all agricultural industries, energy gains would be significant.

Jennifer Beal | alfa
Further information:
http://www.interscience.wiley.com/jctb

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>