Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potato psyllid research helps producers determine best management practices

22.06.2011
One potato field west of Bushland hosts three separate studies, all aimed at helping growers nationwide, even internationally, understand the habits and controls of the potato psyllid.

The potato psyllid is the insect that transmits a bacterium that causes the relatively new disease in potatoes known as zebra chip, according to Dr. Charlie Rush, Texas AgriLife Research plant pathologist.

The team of AgriLife Research scientists and a Texas AgriLife Extension Service specialist is working on potato psyllid control and epidemiology of disease transmission under the Specialty Crop Research Initiative titled, “Management of Zebra Chip to Enhance Profitability and Sustainability of U.S. Potato Production.”

This U.S. Department of Agriculture-National Institute of Food and Agriculture-sponsored initiative is led by Rush, and nationwide has a team of 20 researchers and specialists. More information about the team and their work can be found at: http://zebrachip.tamu.edu/.

At the AgriLife Research farm west of Bushland, Rush is joined by Dr. Jerry Michels, AgriLife Research entomologist, and Dr. Ed Bynum, AgriLife Extension entomologist, who are both looking at different aspects of chemical control on the psyllids.

One focus areas of the zebra chip initiative is management or control of the psyllid vector, Rush said.

“What the producers are definitely interested in is control,” he said.

A large survey that monitors movement of the psyllid is headed up by Dr. John Goolsby with the U.S. Department of Agriculture in Weslaco. Selected fields from the Rio Grande Valley north to the Canadian border are sampled weekly for psyllid infestations and a weekly report is sent out to potato growers.

“Often, producers start spraying according to that report,” Rush said.

The current research by Michels and Bynum is aimed at determining the most effective insecticides, as well as the best decision aids to determine when to start spraying, he said.

While they have already located psyllids in the field, they have not had the bacteria that cause zebra chip disease. Since the bacterial pathogen hasn’t been detected and the number of psyllids may not have reached an economic threshold, producers may be spraying when there is no need, Rush said.

Bynum said his study is aimed at timing treatments based on different action thresholds. This would allow a reduction in the number of potato psyllids and incidence of zebra chip in the tubers, but also minimize chemical application.

His study consists of seven different treatments to determine the best time to begin spraying:

- Apply chemicals, similar to the management program used by potato growers, which means a soil treatment at planting and weekly foliar sprays beginning 30 to 45 days after the soil treatment regardless of psyllid numbers. This is the “farmer control” by which all other treatments are compared. Typically, growers use one chemical for two weeks and then switch to one with a different mode of action to try to prevent resistance buildup.

- Making treatments when three or more psyllids are caught on sticky traps within a week.

- Sweep-net sampling and treating after at least six psyllids are caught per 10 sweeps in a field.

- Testing the psyllids to see if they carry the bacterium and spraying if they do.

- Spraying based on immature psyllids collected per leaf sample. Two per leaf triggers a treatment.

- Treating weekly as the potato growers do, but using a special mixture of pesticides.

- An untreated control against which all other treatments are compared.

The field was planted the first week of April and sampling with sticky traps and leaf samples began the second week of May, Bynum said. The first commercial application-type treatment was made the first week of June. To date, psyllid numbers have not been high enough to warrant spraying based on the action threshold treatments.

“We will carry these out until 80 to 100 days after planting, depending on the insect pressure. That will take the crop almost to harvest,” he said.

“Last year we had hot psyllids (those carrying the bacterial pathogen) in both the Olton and Dalhart areas when we surveyed producers’ fields for Dr. John Goolsby,” Bynum said. “In our test at Bushland last year, we started with heavy psyllid pressure early in the season. This year, we are starting with hardly any. So it is unpredictable when pressure will begin and how long it lasts.

“That’s why it is important to see if we can find a sampling method that allows us to better target treatments at appropriate times, instead of the current blanket method of treating throughout the growing season.”

Bynum said last year’s cost comparison between commercial and experimental treatments showed as much as $300 difference per acre in chemical costs.

“If we can come up with a method to make this decision, then producers can save the cost of the chemical and application, and at the same time prevent the exposure to severe incidences of zebra chip,” he said.

This also helps reduce the potential for developing resistance to insecticides, Bynum said.

Michels is looking at both large-farm scale and small-plot chemical control. The current practice of chemical control is based on the grower’s effort to try to get ahead of the psyllids and stay ahead, fearing that if they wait, they will get behind and not be able to catch up and lose a good portion of the production.

“What is typically being done is treatment with a neonicotinoid insecticide when potato plants emerge,” he said. “That should provide protection for 30 to 40 days. Then the producers can’t immediately go back with another neonicotinoid for fear of building up resistance, so we are trying to find other chemicals that will provide acceptable control.”

He said they are looking at four chemical application timings: the commercial grower sequence, only when hot psyllids are found, no treatment and one quitting early.

“That’s what this summer is for, to see if any of the new compounds work. And we will tie in with Ed Bynum’s work,” Michels said. “The long-term goal is to reduce the amount of chemicals used but be able to give the same amount of protection.

“We want to try to come up with a sequence of the proper chemicals so we won’t get chemical resistance in the psyllids and also reduce the amount of chemical used.”

In another study on the potato field, small tents have been erected to allow Rush and his team to inoculate plants with 30 psyllids. After allowing them one week to feed, the psyllids are killed off and then the plants are sampled weekly for the zebra chip titer.

“We want to see when the pathogen starts developing in the plant, when the disease starts expressing itself and how that relates to severity of disease in the tubers,” he said.

It is possible that if psyllids come in late, even if they infect the plant, the pathogen may not have time to move to the tubers and cause zebra chip. If that is the case, then there would be no need for end-of-season insecticide applications, Rush said.

“Our long-term goal with all these studies is to develop a pest risk assessment tool that the producers can use and feel confident in.”

Contacts

Dr. Charlie Rush, 806-354-5804, crush@ag.tamu.edu
Dr. Ed Bynum, 806-677-5600, ebynum@ag.tamu.edu
Dr. Jerry Michels, 806-354-5806, g-michels@tamu.edu

Dr. Charlie Rush | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>