Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollenizer Research Should Help Seedless Watermelon Farmers

16.10.2012
Research from North Carolina State University on flower production and disease resistance in watermelon varieties should help bolster seedless watermelon harvests for farmers.

Seedless watermelons are more popular than seeded watermelons, making them a more profitable crop for farmers. But the flowers of seedless watermelon plants must be fertilized with pollen from the male flowers of seeded watermelon plants, because seedless plants do not produce genetically viable pollen.

This is a problem, because seeded watermelon plants take up space, nutrients and water that farmers would rather devote to seedless plants. Furthermore, farmers have to take steps to ensure that they don’t mix up the seedless and seeded watermelons at harvest time – and find a market for those less valuable seeded watermelons.

Over the past 10 years, farmers have increasingly turned to varieties of seeded watermelons that produce pollen to fertilize the seedless plants, but that also grow very small, inedible fruit that doesn’t have to be harvested and doesn’t take up much space in the field. These varieties are called “pollenizers” because they are grown solely to provide pollen for the seedless watermelons.

In this study, researchers from NC State and Purdue University set out to address three questions. First, they wanted to know which pollenizer varieties produce the most male flowers, since male flowers may serve as an indicator of pollen production.

Second, at what rate does each variety produce male flowers over the course of a growing season? This is important because farmers want to time their planting so that the female flowers of seedless watermelons are blooming at the same time as the male flowers of the pollenizers.

Third, they wanted to know which pollenizers are most resistant to a fungal infection of the roots called Fusarium wilt – which can kill a plant. The more resistant a variety is to Fusarium wilt, the more likely it is that the plant will avoid becoming infected – and go on to produce plenty of pollen.

The researchers found that three varieties of pollenizers produced the most male flowers over the course of a season: ‘SP-1,’ ‘Sidekick’ and ‘5WDL 6146.’ Two– ‘Sidekick’ and ‘5WDL 6146’ – also showed relatively low rates of infection when exposed to Fusarium.

The study found that several other varieties were even more resistant to Fusarium wilt, including ‘Ace’ and ‘Pinnacle’– but they produced fewer male flowers.

“All in all, this should help farmers make informed decisions about which pollenizers to plant with their seedless watermelons,” says Dr. Chris Gunter, assistant professor of horticultural science at NC State and lead author of the paper. “A lot depends on the conditions in their fields, such as whether the fields have a history of Fusarium wilt.”

The paper, “Staminate Flower Production and Fusarium Wilt Reaction of Diploid Cultivars used as Pollenizers for Triploid Watermelon,” was co-authored by Dr. Daniel Egel of Purdue and is published in the October issue of HortTechnology.

Note to Editors: The study abstract follows.

“Staminate Flower Production and Fusarium Wilt Reaction of Diploid Cultivars used as Pollenizers for Triploid Watermelon”

Authors: Chris Gunter, North Carolina State University; Daniel S. Egel, Purdue University

Published: October 2012 in HortTechnology

Abstract: Several cultivars of non-harvested watermelon (Citrullus lanatus) pollenizers were compared for staminate flower production in field tests and disease reaction to Fusarium wilt Fusarium oxysporum f. sp. niveum (FON) in both greenhouse and field tests. Differences were observed in staminate flower counts and Fusarium wilt reactions in both years of field evaluations and to Fusarium wilt among cultivars evaluated in the greenhouse. ‘SP-1’, ‘Sidekick’ and ‘5WDL 6146’ were the cultivars with high staminate flower counts in the field both years. These cultivars also were among the most resistant to Fusarium wilt in both years of field tests. Significant correlations occurred between the rankings of the cultivar’s Fusarium wilt reactions in both the two field and three greenhouse experiments, indicating a high degree of correlation between field and greenhouse tests.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>