Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pod corn develops leaves in the inflorescences

25.04.2012
A leaf gene active in the maize cob causes leaves to grow in the male and female inflorescences
In a variant of maize known as pod corn, or tunicate maize, the maize kernels on the cob are not ‘naked’ but covered by long membranous husks known as glumes. According to scientists from the Max Planck Institute for Plant Breeding Research in Cologne and Friedrich Schiller University in Jena, this variant arises from the activity of a leaf gene in the maize cob that is not usually active there. Thus, pod corn is not a wild ancestor of maize, but a mutant that forms leaves in the wrong place.

Pod corn has a spectacular appearance that has fascinated naturalists for two centuries. In this maize variant, the kernels are wrapped in fine glumes which look like thin paper in their dried form and resemble a leaf sheath. The male flowers, which are arranged in a panicle at the end of the stem axis, are also surrounded by long glumes, and sometimes even develop kernels that can otherwise only be found in the cob. The pod corn leaves resemble those of the normal maize plant. Pod corn had a ritual significance for some Native American tribes and can therefore be found throughout the American continent.

The putatitive significance of pod corn for the domestication of maize has long been a matter of controversy. Some scientists believed pod corn to be a wild, precursor of the varieties with naked kernels common today. Others disagreed with this view – and they were right, as we now know. The wild ancestor of today’s common maize varieties is not pod corn but the unimpressive sweet grass teosinte.

Heinz Saedler, Günter Theißen and their colleagues have now discovered how the spectacular appearance of pod corn arises. Their findings reveal that this variant has nothing to do with the domestication of maize, but is a mutant that forms leaves in the wrong place. Genetic experiments from the 1950s provided important inspiration for the research. “We knew from the old crossing experiments that the mutation must consist of at least two genetic components that can be inherited separately. If just one component is inherited, the glumes that surround the kernels in this mutant are significantly smaller and less conspicuous than the glumes in mutants with both components. However, they are not as tiny as the glumes found in common maize plants in which the kernels sit naked on the cob,” explains Heinz Saedler from the Max Planck Institute for Plant Breeding Research.

The researchers succeeded in showing that the components in question are two copies of the same gene which are located in tandem on chromosome 4. Although the gene itself is intact in pod corn, the region that controls the transcription of the gene is damaged. As a result of this defect, spatial control of gene activity in the right plant organs is lost. Therefore, in its mutated form, this gene is also active in the cob and not only in the growing leaves. “The gene contains the information for a transcription factor. Through its ectopic activity in the male and female inflorescence, it controls a set of so called ‘target genes’ and hence a programme in the glumes that is normally reserved for leaf development and should not be active in the inflorescence. As a result of this erroneous activity, the glumes assume a leaf-like growth pattern and grow until the kernels are completely covered,” says Günter Theißen from the University of Jena.

These findings also explain the existence of pod corn with smaller glumes. “The extent of this phenotype depends on whether there are one or two copies of the damaged gene on the chromosome and whether the plant is homozygous or heterozygous for this gene,” says Theißen. “If one gene copy is present, the effect on the leaf development programme is only half as strong as it is in one with two copies. Therefore this genetic effect is additive. The gene dosage decides, on the strength of the mutant phenotype.” Theißen and his colleagues were also able to show that the mutated gene belongs to an entire family of developmental control genes known as the MADS-box gene family. Other representatives of this family control other development processes in the plant.
Contact
Professor em. Dr. Heinz Saedler
Max Planck Institute for Plant Breeding Research
Phone: +49 22 150-620
Email: saedler@­mpiz-koeln.mpg.de
Contact
Professor Dr. Günter Theißen
Friedrich-Schiller-Universität
Phone: +49 36 4194-9550
Email: guenter.theissen@­uni-jena.de

Original publication
Luzie U. Wingen, Thomas Münster, Wolfram Faigl, Wim Deleu, Hans Sommer, Heinz Saedler, Günter Theißen
Molecular genetic basis of pod corn (Tunicate maize)
PNAS 2012; online publication, April 18, 2012, doi:10.1073/pnas.1111670109

Professor em. Dr. Heinz Saedler | EurekAlert!
Further information:
http://www.mpg.de/5755791/pod_corn_leaves_inflorescences

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>