Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pod corn develops leaves in the inflorescences

25.04.2012
A leaf gene active in the maize cob causes leaves to grow in the male and female inflorescences
In a variant of maize known as pod corn, or tunicate maize, the maize kernels on the cob are not ‘naked’ but covered by long membranous husks known as glumes. According to scientists from the Max Planck Institute for Plant Breeding Research in Cologne and Friedrich Schiller University in Jena, this variant arises from the activity of a leaf gene in the maize cob that is not usually active there. Thus, pod corn is not a wild ancestor of maize, but a mutant that forms leaves in the wrong place.

Pod corn has a spectacular appearance that has fascinated naturalists for two centuries. In this maize variant, the kernels are wrapped in fine glumes which look like thin paper in their dried form and resemble a leaf sheath. The male flowers, which are arranged in a panicle at the end of the stem axis, are also surrounded by long glumes, and sometimes even develop kernels that can otherwise only be found in the cob. The pod corn leaves resemble those of the normal maize plant. Pod corn had a ritual significance for some Native American tribes and can therefore be found throughout the American continent.

The putatitive significance of pod corn for the domestication of maize has long been a matter of controversy. Some scientists believed pod corn to be a wild, precursor of the varieties with naked kernels common today. Others disagreed with this view – and they were right, as we now know. The wild ancestor of today’s common maize varieties is not pod corn but the unimpressive sweet grass teosinte.

Heinz Saedler, Günter Theißen and their colleagues have now discovered how the spectacular appearance of pod corn arises. Their findings reveal that this variant has nothing to do with the domestication of maize, but is a mutant that forms leaves in the wrong place. Genetic experiments from the 1950s provided important inspiration for the research. “We knew from the old crossing experiments that the mutation must consist of at least two genetic components that can be inherited separately. If just one component is inherited, the glumes that surround the kernels in this mutant are significantly smaller and less conspicuous than the glumes in mutants with both components. However, they are not as tiny as the glumes found in common maize plants in which the kernels sit naked on the cob,” explains Heinz Saedler from the Max Planck Institute for Plant Breeding Research.

The researchers succeeded in showing that the components in question are two copies of the same gene which are located in tandem on chromosome 4. Although the gene itself is intact in pod corn, the region that controls the transcription of the gene is damaged. As a result of this defect, spatial control of gene activity in the right plant organs is lost. Therefore, in its mutated form, this gene is also active in the cob and not only in the growing leaves. “The gene contains the information for a transcription factor. Through its ectopic activity in the male and female inflorescence, it controls a set of so called ‘target genes’ and hence a programme in the glumes that is normally reserved for leaf development and should not be active in the inflorescence. As a result of this erroneous activity, the glumes assume a leaf-like growth pattern and grow until the kernels are completely covered,” says Günter Theißen from the University of Jena.

These findings also explain the existence of pod corn with smaller glumes. “The extent of this phenotype depends on whether there are one or two copies of the damaged gene on the chromosome and whether the plant is homozygous or heterozygous for this gene,” says Theißen. “If one gene copy is present, the effect on the leaf development programme is only half as strong as it is in one with two copies. Therefore this genetic effect is additive. The gene dosage decides, on the strength of the mutant phenotype.” Theißen and his colleagues were also able to show that the mutated gene belongs to an entire family of developmental control genes known as the MADS-box gene family. Other representatives of this family control other development processes in the plant.
Contact
Professor em. Dr. Heinz Saedler
Max Planck Institute for Plant Breeding Research
Phone: +49 22 150-620
Email: saedler@­mpiz-koeln.mpg.de
Contact
Professor Dr. Günter Theißen
Friedrich-Schiller-Universität
Phone: +49 36 4194-9550
Email: guenter.theissen@­uni-jena.de

Original publication
Luzie U. Wingen, Thomas Münster, Wolfram Faigl, Wim Deleu, Hans Sommer, Heinz Saedler, Günter Theißen
Molecular genetic basis of pod corn (Tunicate maize)
PNAS 2012; online publication, April 18, 2012, doi:10.1073/pnas.1111670109

Professor em. Dr. Heinz Saedler | EurekAlert!
Further information:
http://www.mpg.de/5755791/pod_corn_leaves_inflorescences

More articles from Agricultural and Forestry Science:

nachricht For pollock surveys in Alaska, things are looking up
22.05.2015 | NOAA National Marine Fisheries Service

nachricht Brazilian Beef Industry Moves to Reduce Its Destruction of Rain Forests
13.05.2015 | University of Wisconsin-Madison

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>