Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even plants benefit from outsourcing

10.11.2008
The answer to successful revegetation of native flora is in sourcing genetically diverse seed not necessarily relying on remnant local native vegetation to provide seed.

“A common belief is that local native plants are the best source of seed for revegetation projects,” says Dr Linda Broadhurst from CSIRO, Australia’s national science agency.

“It has been presumed that local seed is adapted to local conditions and therefore it would provide the best results for restoration projects.”

“However, the research shows that where vegetation loss is high and across large areas, ‘local’ seed sources are often small and isolated and can be severely inbred resulting in poor seed crops or low quality seed.”

“This can lead to germination failure and poor seedling growth.”

Land and water degradation resulting from vegetation clearance is a global problem. Effective restoration techniques are essential in reducing the damage and improving the environment.

In an effort to help, Dr Broadhurst and her colleagues have published a review on the issues associated with collecting seed for broadscale restoration projects in the new journal Evolutionary Applications (Volume 1, Issue 4).

The review covers the appropriateness of using ‘local’ seed, how much seed and the types of populations that should be sampled, and the impact that over-harvesting might have on remnant populations.

“The current emphasis on using local seed sources for revegetation will, in many cases, lead to poor restoration outcomes,” says Dr Broadhurst.

“Our findings show that seed sourcing should concentrate less on collecting from local environments and more on capturing high quality and genetically diverse seed.”

“This will ensure that restored populations have ample genetic diversity to respond to changing environments over the coming decades.”

The review, titled ‘Seed supply for broadscale restoration: maximising evolutionary potential’ is published in Evolutionary Applications in October 2008. DOI: 10.1111/j.1752-4571.2008.00045.x

Finbar Galligan | alfa
Further information:
http://www3.interscience.wiley.com/journal/121397345/abstract

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>