Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plant scientists move closer to making any crop drought-tolerant

New research builds on breakthrough discovery at UC Riverside of synthetic chemical pyrabactin

Drought-tolerant crops have moved closer to becoming reality.

A collaborative team of scientists has made a significant advance on the discovery last year by the University of California, Riverside's Sean Cutler of pyrabactin, a synthetic chemical that mimics a naturally produced stress hormone in plants to help them cope with drought conditions.

Led by researchers at The Medical College of Wisconsin, the scientists report in Nature Structural & Molecular Biology (online) on Aug. 22 that by understanding how pyrabactin works, other more effective chemicals for bringing drought-resistance to plants can be developed more readily.

Abscisic acid versus pyrabactin

Plants naturally produced a stress hormone, abscisic acid (ABA), in modest amounts to help them survive drought by inhibiting growth. ABA has already been commercialized for agricultural use. But it has at least two disadvantages: it is light-sensitive and costly to make.

Pyrabactin, on the other hand, is relatively inexpensive, easy to make, and not sensitive to light. But its drawback is that, unlike ABA, it does not turn on all the "receptors" in the plant that need to be activated for drought-tolerance to fully take hold.

Lock and key

A receptor is a protein molecule in a cell to which mobile signaling molecules – such as ABA or pyrabactin, each of which turns on stress-signaling pathways in plants – may attach. Usually at the top of a signaling pathway, the receptor functions like a boss relaying orders to the team below that then proceeds to execute particular decisions in the cell.

Each receptor is equipped with a pocket, akin to a padlock, in which a chemical, like pyrabactin, can dock into, operating like a key. Even though the receptor pockets appear to be fairly similar in structure, subtle differences distinguish a pocket from its peers. The result is that while ABA, a product of evolution, can fit neatly in any of these pockets, pyrabactin is less successful. Still, pyrabactin, by being partially effective (it works better on seeds than on plant parts), serves as a leading molecule for devising new chemicals for controlling stress tolerance in plants.

Cutler explained that each receptor is equipped with a lid that operates like a gate. For the receptor to be activated, the lid must remain closed. Pyrabactin is effective at closing the gate on some receptors, turning them on, but cannot close the gate on others. The researchers have now cracked the molecular basis of this behavior.

"A key insight from the current work is that this difference is controlled by subtle differences between the receptors in their binding pockets," said Cutler, an associate professor of plant cell biology in the Department of Botany and Plant Sciences and one of the members of the research team.

He explained that in a receptor where the gate closes, pyrabactin fits in snugly to allow the gate to close. In a receptor not activated by pyrabactin, the chemical binds in a way that prevents the gate from closing and activating the receptor.

"These insights suggest new strategies for modifying pyrabactin and related compounds so that they fit properly into the pockets of other receptors," Cutler said.

Impact of pyrabactin

According to Cutler, pyrabactin has paved the way for manufacturing new molecules that activate or turn on receptors.

"For it to be a good agriculture chemical, however, it needs to turn on more receptors by fitting into their pockets," he said. "If a derivative of pyrabactin could be found that is capable of turning on all the receptors for drought tolerance, the implications for agriculture are enormous. The current research is an important step on the way to what is likely to be the next big result: an ABA-mimicking chemical that can be sprayed on corn, soy bean and other crops."

The discovery of pyrabactin by the Cutler lab was heralded as a breakthrough research of 2009 by Science magazine.

In the current research, Cutler collaborated with Brian Volkman and his research group at the Medical College of Wisconsin, and helped guide critical questions.

"Specifically, we performed genetic experiments that helped us pinpoint which amino acids in the receptors are critical for pyrabactin to either work or not work," Cutler said. "We also identified reasons for why one receptor is sensitive to pyrabactin while a neighboring receptor is not."

A grant from the National Science Foundation supported Cutler's contribution to the study.

Cutler and Volkman were joined in the study by Francis C. Peterson (first author of the research paper), Davin R. Jensen and Joshua J. Weiner of the Medical College of Wisconsin; Sethe Burgie, Craig A. Bingman and George N. Phillips, Jr. of the University of Wisconsin-Madison; and Sang-Youl Park and Chia-An Chang of UCR.

Companion paper

Cutler is a coauthor also on a companion paper, titled "Identification and Mechanism of ABA Receptor Antagonism," that appears online Aug. 22 in Nature Structural & Molecular Biology.

He joins the following researchers in that study: Karsten Melcher (first author), Yong Xu, Ley-Moy Ng, X. Edward Zhou, Fen-Fen Soon, Kelly M. Suino-Powell, Amanda Kovach, Jun Li and H. Eric Xu of the Van Andel Research Institute, Grand Rapids, Mich.; Eu-Leong Yong of the National University of Singapore; and Viswanathan Chinnusamy, Fook S. Tham, and Jian-Kang Zhu of UCR.

The University of California, Riverside ( is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of over 19,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>