Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientists move closer to making any crop drought-tolerant

26.08.2010
New research builds on breakthrough discovery at UC Riverside of synthetic chemical pyrabactin

Drought-tolerant crops have moved closer to becoming reality.

A collaborative team of scientists has made a significant advance on the discovery last year by the University of California, Riverside's Sean Cutler of pyrabactin, a synthetic chemical that mimics a naturally produced stress hormone in plants to help them cope with drought conditions.

Led by researchers at The Medical College of Wisconsin, the scientists report in Nature Structural & Molecular Biology (online) on Aug. 22 that by understanding how pyrabactin works, other more effective chemicals for bringing drought-resistance to plants can be developed more readily.

Abscisic acid versus pyrabactin

Plants naturally produced a stress hormone, abscisic acid (ABA), in modest amounts to help them survive drought by inhibiting growth. ABA has already been commercialized for agricultural use. But it has at least two disadvantages: it is light-sensitive and costly to make.

Pyrabactin, on the other hand, is relatively inexpensive, easy to make, and not sensitive to light. But its drawback is that, unlike ABA, it does not turn on all the "receptors" in the plant that need to be activated for drought-tolerance to fully take hold.

Lock and key

A receptor is a protein molecule in a cell to which mobile signaling molecules – such as ABA or pyrabactin, each of which turns on stress-signaling pathways in plants – may attach. Usually at the top of a signaling pathway, the receptor functions like a boss relaying orders to the team below that then proceeds to execute particular decisions in the cell.

Each receptor is equipped with a pocket, akin to a padlock, in which a chemical, like pyrabactin, can dock into, operating like a key. Even though the receptor pockets appear to be fairly similar in structure, subtle differences distinguish a pocket from its peers. The result is that while ABA, a product of evolution, can fit neatly in any of these pockets, pyrabactin is less successful. Still, pyrabactin, by being partially effective (it works better on seeds than on plant parts), serves as a leading molecule for devising new chemicals for controlling stress tolerance in plants.

Cutler explained that each receptor is equipped with a lid that operates like a gate. For the receptor to be activated, the lid must remain closed. Pyrabactin is effective at closing the gate on some receptors, turning them on, but cannot close the gate on others. The researchers have now cracked the molecular basis of this behavior.

"A key insight from the current work is that this difference is controlled by subtle differences between the receptors in their binding pockets," said Cutler, an associate professor of plant cell biology in the Department of Botany and Plant Sciences and one of the members of the research team.

He explained that in a receptor where the gate closes, pyrabactin fits in snugly to allow the gate to close. In a receptor not activated by pyrabactin, the chemical binds in a way that prevents the gate from closing and activating the receptor.

"These insights suggest new strategies for modifying pyrabactin and related compounds so that they fit properly into the pockets of other receptors," Cutler said.

Impact of pyrabactin

According to Cutler, pyrabactin has paved the way for manufacturing new molecules that activate or turn on receptors.

"For it to be a good agriculture chemical, however, it needs to turn on more receptors by fitting into their pockets," he said. "If a derivative of pyrabactin could be found that is capable of turning on all the receptors for drought tolerance, the implications for agriculture are enormous. The current research is an important step on the way to what is likely to be the next big result: an ABA-mimicking chemical that can be sprayed on corn, soy bean and other crops."

The discovery of pyrabactin by the Cutler lab was heralded as a breakthrough research of 2009 by Science magazine.

In the current research, Cutler collaborated with Brian Volkman and his research group at the Medical College of Wisconsin, and helped guide critical questions.

"Specifically, we performed genetic experiments that helped us pinpoint which amino acids in the receptors are critical for pyrabactin to either work or not work," Cutler said. "We also identified reasons for why one receptor is sensitive to pyrabactin while a neighboring receptor is not."

A grant from the National Science Foundation supported Cutler's contribution to the study.

Cutler and Volkman were joined in the study by Francis C. Peterson (first author of the research paper), Davin R. Jensen and Joshua J. Weiner of the Medical College of Wisconsin; Sethe Burgie, Craig A. Bingman and George N. Phillips, Jr. of the University of Wisconsin-Madison; and Sang-Youl Park and Chia-An Chang of UCR.

Companion paper

Cutler is a coauthor also on a companion paper, titled "Identification and Mechanism of ABA Receptor Antagonism," that appears online Aug. 22 in Nature Structural & Molecular Biology.

He joins the following researchers in that study: Karsten Melcher (first author), Yong Xu, Ley-Moy Ng, X. Edward Zhou, Fen-Fen Soon, Kelly M. Suino-Powell, Amanda Kovach, Jun Li and H. Eric Xu of the Van Andel Research Institute, Grand Rapids, Mich.; Eu-Leong Yong of the National University of Singapore; and Viswanathan Chinnusamy, Fook S. Tham, and Jian-Kang Zhu of UCR.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of over 19,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>