Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientists at CSHL demonstrate new means of boosting maize yields

04.02.2013
A team of plant geneticists at Cold Spring Harbor Laboratory (CSHL) has successfully demonstrated what it describes as a "simple hypothesis" for making significant increases in yields for the maize plant.

Called corn by most people in North America, modern variants of the Zea mays plant are among the indispensable food crops that feed billions of the planet's people. As global population soars beyond 6 billion and heads for an estimated 8 to 9 billion by mid-century, efforts to boost yields of essential food crops takes on ever greater potential significance.

The new findings obtained by CSHL Professor David Jackson and colleagues, published online today in Nature Genetics, represent the culmination of over a decade of research and creative thinking on how to perform genetic manipulations in maize that will have the effect of increasing the number of its seeds – which most of us call kernels.

Plant growth and development depend on structures called meristems – reservoirs in plants that consist of the plant version of stem cells. When prompted by genetic signals, cells in the meristem develop into the plant's organs – leaves and flowers, for instance. Jackson's team has taken an interest in how quantitative variation in the pathways that regulate plant stem cells contribute to a plant's growth and yield.

"Our simple hypothesis was that an increase in the size of the inflorescence meristem – the stem-cell reservoir that gives rise to flowers and ultimately, after pollination, seeds – will provide more physical space for the development of the structures that mature into kernels."

Dr. Peter Bommert, a former postdoctoral fellow in the Jackson lab, performed an analytical technique on several maize variants that revealed what scientists call quantitative trait loci (QTLs): places along the chromosomes that "map" to specific complex traits such as yield. The analysis pointed to a gene that Jackson has been interested in since 2001, when he was first to clone it: a maize gene called FASCIATED EAR2 (FEA2).

Not long after cloning the gene, Jackson had a group of gifted Long Island high school students, part of a program called Partners for the Future, perform an analysis of literally thousands of maize ears. Their task was to meticulously count the number of rows of kernels on each ear. It was part of a research project that won the youths honors in the Intel Science competition. Jackson, meantime, gained important data that now has come to full fruition.

The lab's current research has now shown that by producing a weaker-than-normal version of the FEA2 gene – one whose protein is mutated but still partly functional -- it is possible, as Jackson postulated, to increase meristem size, and in so doing, get a maize plant to produce ears with more rows and more kernels.

How many more? In two different crops of maize variants that the Jackson team grew in two locations with weakened versions of FEA2, the average ear had 18 to 20 rows and up to 289 kernels – as compared with wild-type versions of the same varieties, with 14 to 16 rows and 256 kernels. Compared with the latter figure, the successful FEA2 mutants had a kernel yield increase of some 13%.

"We were excited to note this increase was accomplished without reducing the length of the ears or causing fasciation – a deformation that tends to flatten the ears," Jackson says. Both of those characteristics, which can sharply lower yield, are prominent when FEA2 is completely missing, as the team's experiments also demonstrated.

Teosinte, the humble wild weed that Mesoamericans began to modify about 7000 years ago, beginning a process that resulted in the domestication of maize, makes only 2 rows of kernels; elite modern varieties of the plant can produce as many as 20.

A next step in the research is to cross-breed the "weak" FEA2 gene variant, or allele, associated with higher kernel yield with the best maize lines used in today's food crops to ask if it will produce a higher-yield plant.

"Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus" appears online in Nature Genetics on February 3, 2013. The authors are: Peter Bommert, Namiko Satoh Nagasawa and David Jackson. The paper can be viewed at: http://www.nature.com/ng/journal/vaop/ncurrent/index.html

The research described in this release was supported in part by funding from the U.S. Department of Agriculture (grant NRICGP 2003-3504-13277); the National Science Foundation Plant Genome Program (grant DBI-0604923); and the German Science Society.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CSHL Nature Genetics Nature Immunology Nobel Prize cold fusion food crop stem cells

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>