Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientists at CSHL demonstrate new means of boosting maize yields

04.02.2013
A team of plant geneticists at Cold Spring Harbor Laboratory (CSHL) has successfully demonstrated what it describes as a "simple hypothesis" for making significant increases in yields for the maize plant.

Called corn by most people in North America, modern variants of the Zea mays plant are among the indispensable food crops that feed billions of the planet's people. As global population soars beyond 6 billion and heads for an estimated 8 to 9 billion by mid-century, efforts to boost yields of essential food crops takes on ever greater potential significance.

The new findings obtained by CSHL Professor David Jackson and colleagues, published online today in Nature Genetics, represent the culmination of over a decade of research and creative thinking on how to perform genetic manipulations in maize that will have the effect of increasing the number of its seeds – which most of us call kernels.

Plant growth and development depend on structures called meristems – reservoirs in plants that consist of the plant version of stem cells. When prompted by genetic signals, cells in the meristem develop into the plant's organs – leaves and flowers, for instance. Jackson's team has taken an interest in how quantitative variation in the pathways that regulate plant stem cells contribute to a plant's growth and yield.

"Our simple hypothesis was that an increase in the size of the inflorescence meristem – the stem-cell reservoir that gives rise to flowers and ultimately, after pollination, seeds – will provide more physical space for the development of the structures that mature into kernels."

Dr. Peter Bommert, a former postdoctoral fellow in the Jackson lab, performed an analytical technique on several maize variants that revealed what scientists call quantitative trait loci (QTLs): places along the chromosomes that "map" to specific complex traits such as yield. The analysis pointed to a gene that Jackson has been interested in since 2001, when he was first to clone it: a maize gene called FASCIATED EAR2 (FEA2).

Not long after cloning the gene, Jackson had a group of gifted Long Island high school students, part of a program called Partners for the Future, perform an analysis of literally thousands of maize ears. Their task was to meticulously count the number of rows of kernels on each ear. It was part of a research project that won the youths honors in the Intel Science competition. Jackson, meantime, gained important data that now has come to full fruition.

The lab's current research has now shown that by producing a weaker-than-normal version of the FEA2 gene – one whose protein is mutated but still partly functional -- it is possible, as Jackson postulated, to increase meristem size, and in so doing, get a maize plant to produce ears with more rows and more kernels.

How many more? In two different crops of maize variants that the Jackson team grew in two locations with weakened versions of FEA2, the average ear had 18 to 20 rows and up to 289 kernels – as compared with wild-type versions of the same varieties, with 14 to 16 rows and 256 kernels. Compared with the latter figure, the successful FEA2 mutants had a kernel yield increase of some 13%.

"We were excited to note this increase was accomplished without reducing the length of the ears or causing fasciation – a deformation that tends to flatten the ears," Jackson says. Both of those characteristics, which can sharply lower yield, are prominent when FEA2 is completely missing, as the team's experiments also demonstrated.

Teosinte, the humble wild weed that Mesoamericans began to modify about 7000 years ago, beginning a process that resulted in the domestication of maize, makes only 2 rows of kernels; elite modern varieties of the plant can produce as many as 20.

A next step in the research is to cross-breed the "weak" FEA2 gene variant, or allele, associated with higher kernel yield with the best maize lines used in today's food crops to ask if it will produce a higher-yield plant.

"Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus" appears online in Nature Genetics on February 3, 2013. The authors are: Peter Bommert, Namiko Satoh Nagasawa and David Jackson. The paper can be viewed at: http://www.nature.com/ng/journal/vaop/ncurrent/index.html

The research described in this release was supported in part by funding from the U.S. Department of Agriculture (grant NRICGP 2003-3504-13277); the National Science Foundation Plant Genome Program (grant DBI-0604923); and the German Science Society.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CSHL Nature Genetics Nature Immunology Nobel Prize cold fusion food crop stem cells

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>