Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant communities produce greater yield than monocultures

16.10.2014

Diverse plant communities are more successful and enable higher crop yields than pure monocultures, a European research team headed by ecologists from the University of Zurich has discovered. The scientists are convinced that the cultivation of crop mixtures in agriculture and forestry will play a key role in food safety in the future.

Although monocultures can be cultivated efficiently, they are anything but sustainable: environmental damage to soil and water caused by monoculture cultivation is becoming increasingly evident. Despite their disadvantages, however, monocultures remain the principal crop form and are regarded as the sole possibility of achieving higher yields in plant production – quite wrongfully, finds Bernhard Schmid, an ecology professor at the University of Zurich, who advocates a novel form of agriculture and forestry.

After all, a new study carried out by PhD student Debra Zuppinger Dingley reveals that in grassland plants the yields of diverse plant communities are larger than those of monocultures.

Schmid sees “an opportunity for the future of nutrition for humankind in the untapped potential of biodiversity” – a promising prospect as the OECD and the United Nations’ Food and Agriculture Organization (FAO) are giving off worrying signals: Both organizations predict that agricultural productivity will rise less steeply in future than has been the case thus far. With a global population that is also on the increase, this would signify a decline in food safety.

Diverse plant communities use resources more effectively
In a 10-year study, a team of researchers from Switzerland, Germany and the Netherlands headed by Schmid examined the yields from grassland plants which they had cultivated in monocultures or mixed plant communities. Surprisingly, the latter proved to be more productive than the monocultures. “Due to their diversity, plant species in communities occupy all the niches available in an ecosystem. This enables them to use soil nutrients, light and water far more effectively than monocultures, which ultimately leads to greater yields,” explains Dan Flynn, a postdoc in Schmid’s group.

Another advantage: There is less pressure from parasites on plants in diverse communities than on those in monocultures. In other words, a parasite can spread less effectively as it is unable to find its special host plant as easily in a biodiverse plant world. The different plant species thus act as protective shields for each other. This mutual protection within the group enables individual plants to invest the resources available into growth and the production of offspring instead of pest control. “Diversity offers protection against pests and is a prerequisite for higher yields in plant communities,” says Schmid.

Plant species evolve with each other
Moreover, the researchers discovered that species adapt to their plant communities in the time of a few generations. This so-called short-term evolution leads to a continued increase of crop yield in mixtures – a possibility that, according to Schmid, was unexpected in both basic research and plant cultivation. In this adaptation process, the various species specialize in their strengths and thus improve the complementary utilization of resources throughout the plant community by a process called character displacement. Grasses, for instance, develop thicker leaves, which are able to utilize the direct sunlight in the upper layer of a meadow while clover species sprout larger but thinner leaves to absorb the weaker light close to the ground more effectively.

Paving the way for sustainable agriculture and forestry
Today, biodiversity is primarily associated with pure conservation, the preservation of species and genetic diversity. “The research results reveal that diversity enables the functionality of the ecosystems to be stabilized at a high level in the course of time and in different environments,” concludes Schmid. He is convinced that the results published in the science journal Nature, coupled with the findings from his earlier research projects, can trigger a paradigm shift in agriculture in the long run. After all, the positive effects of mixed crops are not just evident in plant communities like meadows and forests, but also in the mixed cultivation of different varieties or genotypes of a single crop such as wheat.

“Plant breeding and cultivation methods should therefore be geared towards mixtures instead of improving the output of monocultures,” says the ecologist from UZH. The fact that more sustainable farming will also be promoted in the process because mixtures require less pest control and utilize fertilizers more effectively is a welcome bonus.

Literature:
Debra Zuppinger-Dingley, Bernhard Schmid, Jana S. Petermann, Varuna Yadav, Gerlinde B. De Deyn, Dan F. B. Flynn. Selection for niche differentiation in plant communities increases biodiversity effects. doi: 10.1038/nature13869

Simon L. Zeller, Olena Kalinina, Dan F. B. Flynn, Bernhard Schmid, Mixtures of genetically modified wheat lines outperform monocultures. Ecological Applications, 22(6), 2012, pp. 1817–1826


Contact:
Prof. Bernhard Schmid
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Tel.: +41 79 681 99 36
Email: bernhard.schmid@ieu.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>