Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No place like elsewhere for the lodgepole pine

05.02.2014
Thanks to its excellent growth, the Canadian lodgepole pine has become a popular feature of forestry in Northern Sweden.

Researchers from the Swedish University of Agricultural Sciences are now able to demonstrate that organisms in the Swedish soil most likely contribute to the success of this exotic tree species.


A Pinus contorta landscape in northern British Columbia, Canada, which is the general region where much of the Swedish P. contorta originated.

Photo: Michael Gundale

When the researchers studied the growth of the lodgepole pine in sterilized and unsterilized Swedish and Canadian soil samples, they discovered clear differences in growth: it grew better in soil inoculated with Swedish soil biota compared to Canadian soil biota.

These results improve our understanding of why some exotic tree species and invasive plants at times can function so well in new environments.

Plants are often moved away from their natural provenance, and sometimes they become stronger competitors in their new habitat. This may be welcomed by agriculture and forestry, while an introduced plant spreading uncontrollably in nature can become a major concern. The reason why plants sometimes function very differently in a new environment is a question that many researchers are currently focusing on.

Michael Gundale and his colleagues from the Swedish University of Agricultural Sciences (SLU) have focused on what the organisms found in Swedish and Canadian soils mean for the growth of the lodgepole pine*. There is a multitude of life forms in soil, some of which may be harmful (such as diseases and herbivores), and some of which may be beneficial (such as mycorrhizal fungi). By conducting a series of experiments on young plants, the researchers have shown that the growth of the lodgepole pine is greatly affected by which organisms live in the soil.

A first greenhouse trial indicated that the plants grew much better in soil samples from the areas in northern Sweden where the lodgepole pine has been introduced, compared with the soil samples from its original habitat in Canadian British Columbia. When the experiment was repeated in soil samples that had been sterilised through gamma irradiation, the growth was no longer affected by the soil being Swedish or Canadian. It also turned out that sterilised soil (regardless of origin) inoculated with Canadian organisms showed stunted growth, while “Swedish inoculation” improved growth.

“We have therefore clear evidence that differences in soil organisms between Pinus contorta’s Canadian and Swedish ranges have a great impact on the trees growth,” says Michael Gundale. “One plausible explanation is that plants growing in Canadian soil are exposed to antagonistic microorganisms that are specialised to lodgepole pine, while the Swedish soil offers an enhanced mutualism with mycorrhizal fungi. But we have not yet had the opportunity to examine this.”

Earlier experiments have looked at why a certain species does better in a new environment than in its natural habitat. However, these experiments have often only looked at one or a few of the many factors that could contribute to such a success, and no statements can therefore be made in respect to the importance of various factors in relation to each other. What makes this SLU study unique is that the researchers have not only examined the importance of soil biota, but have also considered a number of other factors that could also affect growth differences between the countries; they used soil samples from several places in Sweden and Canada, collected seeds from several areas, tested different fertilisation levels and took into account chemical and physical variations in the soil. However, the importance of Swedish and Canadian soil biota for growth remained the same, regardless of how all of these other factors were altered.

“I would love to conduct an equivalent study on Swedish pines,” concludes Michael Gundale. “If it were to turn out that the Swedish pines (Pinus sylvestris) are equally stunted by the indigenous soil organisms, it would be interesting to examine which soil biota are responsible for it, and what could be done to protect the plants.”

* The lodgepole pine (Pinus contorta) originates from western North America. In the north of Sweden, the lodgepole pine has been planted on hundreds of thousands of acres. This introduction started in the 1970s and, at the time, it was thought that a natural rejuvenation could only take place in connection with a fire - which would prevent an uncontrollable spread. This however has not proven to be entirely true.

The article
Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytologist (2014). (by Michael J. Gundale, Paul Kardol, Marie-Charlotte Nilsson, Urban Nilsson, Richard W. Lucas & David A. Wardle)

doi: 10.1111/nph.12699.

Further information:
Michael J. Gundale, Associate Professor, Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden

+46 (0)90-786 84 27, Michael.Gundale@slu.se

Pressofficer David Stephansson; David.Stephansson@slu.se, +46-72 511 69 90

Press images may be published without charge in articles about these findings, please acknowledge the photographer.

David Stephansson | idw
Further information:
http://www.seksko.se/
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht How algae could save plants from themselves
11.05.2016 | Carnegie Institution for Science

nachricht Biofeedback system designed to control photosynthetic lighting
10.05.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Fast, stretchy circuits could yield new wave of wearable electronics

30.05.2016 | Power and Electrical Engineering

Roadmap for better protection of Borneo’s cats and small carnivores

30.05.2016 | Ecology, The Environment and Conservation

Rosetta’s comet contains ingredients for life

30.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>