Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No place like elsewhere for the lodgepole pine

05.02.2014
Thanks to its excellent growth, the Canadian lodgepole pine has become a popular feature of forestry in Northern Sweden.

Researchers from the Swedish University of Agricultural Sciences are now able to demonstrate that organisms in the Swedish soil most likely contribute to the success of this exotic tree species.


A Pinus contorta landscape in northern British Columbia, Canada, which is the general region where much of the Swedish P. contorta originated.

Photo: Michael Gundale

When the researchers studied the growth of the lodgepole pine in sterilized and unsterilized Swedish and Canadian soil samples, they discovered clear differences in growth: it grew better in soil inoculated with Swedish soil biota compared to Canadian soil biota.

These results improve our understanding of why some exotic tree species and invasive plants at times can function so well in new environments.

Plants are often moved away from their natural provenance, and sometimes they become stronger competitors in their new habitat. This may be welcomed by agriculture and forestry, while an introduced plant spreading uncontrollably in nature can become a major concern. The reason why plants sometimes function very differently in a new environment is a question that many researchers are currently focusing on.

Michael Gundale and his colleagues from the Swedish University of Agricultural Sciences (SLU) have focused on what the organisms found in Swedish and Canadian soils mean for the growth of the lodgepole pine*. There is a multitude of life forms in soil, some of which may be harmful (such as diseases and herbivores), and some of which may be beneficial (such as mycorrhizal fungi). By conducting a series of experiments on young plants, the researchers have shown that the growth of the lodgepole pine is greatly affected by which organisms live in the soil.

A first greenhouse trial indicated that the plants grew much better in soil samples from the areas in northern Sweden where the lodgepole pine has been introduced, compared with the soil samples from its original habitat in Canadian British Columbia. When the experiment was repeated in soil samples that had been sterilised through gamma irradiation, the growth was no longer affected by the soil being Swedish or Canadian. It also turned out that sterilised soil (regardless of origin) inoculated with Canadian organisms showed stunted growth, while “Swedish inoculation” improved growth.

“We have therefore clear evidence that differences in soil organisms between Pinus contorta’s Canadian and Swedish ranges have a great impact on the trees growth,” says Michael Gundale. “One plausible explanation is that plants growing in Canadian soil are exposed to antagonistic microorganisms that are specialised to lodgepole pine, while the Swedish soil offers an enhanced mutualism with mycorrhizal fungi. But we have not yet had the opportunity to examine this.”

Earlier experiments have looked at why a certain species does better in a new environment than in its natural habitat. However, these experiments have often only looked at one or a few of the many factors that could contribute to such a success, and no statements can therefore be made in respect to the importance of various factors in relation to each other. What makes this SLU study unique is that the researchers have not only examined the importance of soil biota, but have also considered a number of other factors that could also affect growth differences between the countries; they used soil samples from several places in Sweden and Canada, collected seeds from several areas, tested different fertilisation levels and took into account chemical and physical variations in the soil. However, the importance of Swedish and Canadian soil biota for growth remained the same, regardless of how all of these other factors were altered.

“I would love to conduct an equivalent study on Swedish pines,” concludes Michael Gundale. “If it were to turn out that the Swedish pines (Pinus sylvestris) are equally stunted by the indigenous soil organisms, it would be interesting to examine which soil biota are responsible for it, and what could be done to protect the plants.”

* The lodgepole pine (Pinus contorta) originates from western North America. In the north of Sweden, the lodgepole pine has been planted on hundreds of thousands of acres. This introduction started in the 1970s and, at the time, it was thought that a natural rejuvenation could only take place in connection with a fire - which would prevent an uncontrollable spread. This however has not proven to be entirely true.

The article
Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytologist (2014). (by Michael J. Gundale, Paul Kardol, Marie-Charlotte Nilsson, Urban Nilsson, Richard W. Lucas & David A. Wardle)

doi: 10.1111/nph.12699.

Further information:
Michael J. Gundale, Associate Professor, Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden

+46 (0)90-786 84 27, Michael.Gundale@slu.se

Pressofficer David Stephansson; David.Stephansson@slu.se, +46-72 511 69 90

Press images may be published without charge in articles about these findings, please acknowledge the photographer.

David Stephansson | idw
Further information:
http://www.seksko.se/
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>