Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pilotless Aircraft Will Play Critical Roles in Precision Agriculture

28.01.2015

Comparing an unmanned aerial vehicle to a magnetic resonance imaging machine may seem odd, but that is how the director of the Mississippi State University Geosystems Research Institute sees it.

“The plant is the patient, the agronomists are the doctors, and I am the guy who works on the MRI machine,” said Robert Moorhead, GRI director and Billie J. Ball Professor of Electrical and Computer Engineering in the MSU Bagley College of Engineering.


(Photo by MSU Ag Communications/Kat Lawrence)

Lee Hathcock, a coordinator with the Mississippi State University Geosystems Research Institute, prepared to launch an unmanned aerial vehicle July 17, 2014 at the MSU Black Belt Experiment Station in Brooksville, Mississippi.

UAVs -- flying above tractors but well below manned aircraft -- are the newest instruments used in precision agriculture. Mississippi State holds certificates of authorization from the Federal Aviation Administration to operate UAVs for research purposes, and Mississippi Agricultural and Forestry Experiment Station scientists have been using the remotely piloted aircraft in various studies.

FAA officials are developing regulations for the commercial use of UAVs, and Congress has set a September 2015 deadline for the agency to establish rules specifically for small, unmanned aerial systems. So far, the aerial equipment has been approved for commercial use only in a very limited capacity.

In the meantime, Moorhead and his GRI colleagues are working with MAFES agronomists and MSU Extension Service specialists to incorporate the use of UAVs in site-specific agricultural research. Moorhead said scientists are using the aerial equipment in research related to irrigation, plant growth, nutrient management and herbicide application.

Precision agriculture requires a number of other technologies, including remote sensing, global positioning systems and geographic information systems, Moorhead explained. These technologies are designed to collect and analyze site-specific data that can be used to create and apply effective prescriptions for every inch of an agricultural field.

Before the advent of unmanned aircraft, remote-sensing data had to be collected with satellites, ground instrumentation and piloted aircraft.

“UAVs now are another remote-sensing tool available to collect visual and multispectral data,” Moorhead said. “Precision agriculture is data driven, and UAV technology adds another significant layer of data for researchers and, ultimately, crop consultants and producers to assess and utilize in a meaningful way.”

In one recent study on corn plant growth, GRI personnel worked with Brien Henry, an associate professor in the MSU Department of Plant and Soil Sciences. Henry and his team planted several corn hybrids at various dates and plant densities. From March to May 2014, they planted 20,000 to 40,000 plants per acre in fields at Starkville, Brooksville and Verona.

They used UAVs to collect plant population data, such as emergence progress, plant heights, growth stages, plants per acre and numbers of unfurled leaves. While Henry’s study was in its second year, this was the first time UAV technology was used to augment research on the ground.

“They were flying overhead and collecting visual and multispectral data,” Henry said. “At the same time, the ground team was analyzing the data to ensure images from above was what we were actually seeing on the ground.”

Henry said a primary goal of his research is the development of automated computer programs that can recognize individual seedlings and quickly and accurately determine plant density across a planted field. Spatially explicit maps of plant populations would allow producers to make timely and informed decisions about replanting, he explained.

UAVs are capable of flying as low as 100 feet above the ground, while small, manned aircraft must operate at elevations between 2,000 and 3,000 feet. Of course, satellites can only look down from space orbit. Clearly, a difference in altitude can impact resolutions dramatically.

Henry said UAVs can zoom in to a resolution of approximately one-eighth of an inch, while planes and satellites are limited to collecting images at resolutions of about 18 inches. Also, UAV images may be collected during bad weather, and one UAV can cover approximately 1,000 acres in an hour.

For researchers, the most critical UAV component is its payload system -- the camera. Various payloads can collect both visual and multispectral images and real-time, high-definition video.

The UAV and its payload offer additional advantages, as well:
• Data may be collected as a single image or mosaics showing either portions or an entire field;
• UAVs are much faster to access and less expensive than traditional aircraft used to survey fields; and
• Data from a UAV payload can be immediately downloaded to a tablet or smartphone, which allows researchers to quickly and efficiently evaluate information.

“UAV technology provides additional eyes on the field,” Henry said. “I hope that someday the technology helps producers assess and address potential stand issues quickly and accurately.”

Wes Burger, MAFES associate director, said precision agriculture currently encompasses a vast wealth of data-driven applications.

“These applications are built on sound research that characterizes relationships between observable phenomena and plant performance,” Burger said. “Precision-agriculture research is about connecting data to decisions. The meaningful data within those applications helps drive every decision the farmer makes in the field.”

Burger said the goal of UAV research is to collect data that will augment and improve current management practices so farmers can boost yield, productivity and profit while enhancing environmental stewardship.

Contact Information
Bonnie Coblentz
Media Relations Writer, Editor
b.coblentz@msstate.edu
Phone: 662-325-2901

Vanessa Beeson | newswise
Further information:
http://www.msstate.edu

Further reports about: Agricultural Aircraft Communications Engineering GRI MSU Precision UAV agriculture satellites technologies

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>