Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pilotless Aircraft Will Play Critical Roles in Precision Agriculture

28.01.2015

Comparing an unmanned aerial vehicle to a magnetic resonance imaging machine may seem odd, but that is how the director of the Mississippi State University Geosystems Research Institute sees it.

“The plant is the patient, the agronomists are the doctors, and I am the guy who works on the MRI machine,” said Robert Moorhead, GRI director and Billie J. Ball Professor of Electrical and Computer Engineering in the MSU Bagley College of Engineering.


(Photo by MSU Ag Communications/Kat Lawrence)

Lee Hathcock, a coordinator with the Mississippi State University Geosystems Research Institute, prepared to launch an unmanned aerial vehicle July 17, 2014 at the MSU Black Belt Experiment Station in Brooksville, Mississippi.

UAVs -- flying above tractors but well below manned aircraft -- are the newest instruments used in precision agriculture. Mississippi State holds certificates of authorization from the Federal Aviation Administration to operate UAVs for research purposes, and Mississippi Agricultural and Forestry Experiment Station scientists have been using the remotely piloted aircraft in various studies.

FAA officials are developing regulations for the commercial use of UAVs, and Congress has set a September 2015 deadline for the agency to establish rules specifically for small, unmanned aerial systems. So far, the aerial equipment has been approved for commercial use only in a very limited capacity.

In the meantime, Moorhead and his GRI colleagues are working with MAFES agronomists and MSU Extension Service specialists to incorporate the use of UAVs in site-specific agricultural research. Moorhead said scientists are using the aerial equipment in research related to irrigation, plant growth, nutrient management and herbicide application.

Precision agriculture requires a number of other technologies, including remote sensing, global positioning systems and geographic information systems, Moorhead explained. These technologies are designed to collect and analyze site-specific data that can be used to create and apply effective prescriptions for every inch of an agricultural field.

Before the advent of unmanned aircraft, remote-sensing data had to be collected with satellites, ground instrumentation and piloted aircraft.

“UAVs now are another remote-sensing tool available to collect visual and multispectral data,” Moorhead said. “Precision agriculture is data driven, and UAV technology adds another significant layer of data for researchers and, ultimately, crop consultants and producers to assess and utilize in a meaningful way.”

In one recent study on corn plant growth, GRI personnel worked with Brien Henry, an associate professor in the MSU Department of Plant and Soil Sciences. Henry and his team planted several corn hybrids at various dates and plant densities. From March to May 2014, they planted 20,000 to 40,000 plants per acre in fields at Starkville, Brooksville and Verona.

They used UAVs to collect plant population data, such as emergence progress, plant heights, growth stages, plants per acre and numbers of unfurled leaves. While Henry’s study was in its second year, this was the first time UAV technology was used to augment research on the ground.

“They were flying overhead and collecting visual and multispectral data,” Henry said. “At the same time, the ground team was analyzing the data to ensure images from above was what we were actually seeing on the ground.”

Henry said a primary goal of his research is the development of automated computer programs that can recognize individual seedlings and quickly and accurately determine plant density across a planted field. Spatially explicit maps of plant populations would allow producers to make timely and informed decisions about replanting, he explained.

UAVs are capable of flying as low as 100 feet above the ground, while small, manned aircraft must operate at elevations between 2,000 and 3,000 feet. Of course, satellites can only look down from space orbit. Clearly, a difference in altitude can impact resolutions dramatically.

Henry said UAVs can zoom in to a resolution of approximately one-eighth of an inch, while planes and satellites are limited to collecting images at resolutions of about 18 inches. Also, UAV images may be collected during bad weather, and one UAV can cover approximately 1,000 acres in an hour.

For researchers, the most critical UAV component is its payload system -- the camera. Various payloads can collect both visual and multispectral images and real-time, high-definition video.

The UAV and its payload offer additional advantages, as well:
• Data may be collected as a single image or mosaics showing either portions or an entire field;
• UAVs are much faster to access and less expensive than traditional aircraft used to survey fields; and
• Data from a UAV payload can be immediately downloaded to a tablet or smartphone, which allows researchers to quickly and efficiently evaluate information.

“UAV technology provides additional eyes on the field,” Henry said. “I hope that someday the technology helps producers assess and address potential stand issues quickly and accurately.”

Wes Burger, MAFES associate director, said precision agriculture currently encompasses a vast wealth of data-driven applications.

“These applications are built on sound research that characterizes relationships between observable phenomena and plant performance,” Burger said. “Precision-agriculture research is about connecting data to decisions. The meaningful data within those applications helps drive every decision the farmer makes in the field.”

Burger said the goal of UAV research is to collect data that will augment and improve current management practices so farmers can boost yield, productivity and profit while enhancing environmental stewardship.

Contact Information
Bonnie Coblentz
Media Relations Writer, Editor
b.coblentz@msstate.edu
Phone: 662-325-2901

Vanessa Beeson | newswise
Further information:
http://www.msstate.edu

Further reports about: Agricultural Aircraft Communications Engineering GRI MSU Precision UAV agriculture satellites technologies

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>