Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Piglets open doors to study infant brain development

29.06.2010
Events occurring during the development of an infant's brain can leave behind fingerprints. And researchers at the University of Illinois are interested in learning how these fingerprints can predict future behavioral problems such as cognitive deficits, anxiety disorders, depression, and even autism. New U of I research shows that the baby pig may provide some answers.

Researchers discovered that neonatal piglets are capable of being trained in traditional learning and memory tests. As a result, these piglets can provide critical information that could directly benefit human health.

"Studies suggest that inadequate nutrition, stress, and infection leave fingerprints in early brain development that can make a person more vulnerable to behavior disorders later in life," said Rodney Johnson, U of I professor of animal sciences and director of the Division of Nutritional Sciences. "We are interested in learning how the brain develops during this time and how cognitive ability is affected. Our goal is to understand how to promote optimum brain and cognitive development, and minimize potential experiential influences that might hinder the process."

The use of the pig in neuroscience research is gaining popularity because pigs are anatomically similar to humans and many of their organ systems grow and develop similarly as well. Pigs are also precocial, meaning they are born with well-developed sensory and motor systems. This allows them to be very mobile and weaned at an early age.

"Most important, the pig brain's growth spurt occurs perinatally – a little before and a little after birth," Johnson said. "In contrast, the rodent's brain growth spurt occurs after birth and the non-human primate's occurs before birth, making them less ideal to study and compare to humans."

The brain's rapid growth spurt is a critical period of time, Johnson said.

"We know that if something goes wrong during this developmental period, the brain can be permanently altered," he said. "We believe that events occurring during this developmental period may underlie some of the behavioral problems that emerge later in life."

In the study, piglets were weaned from their mothers at 2 days of age and set up with a milk system that delivered 14 small meals a day – mimicking the number of meals they'd receive from their mother.

At two weeks of age, piglets were trained to locate a milk reward in an 8-arm radial maze, a large version of models typically used to study rodent behavior. The eight arms of the maze were equipped with a cup exactly like the cup piglets fed from during the day. Seven of the bowls contained inaccessible milk and one bowl contained milk that was accessible. The goal was to teach the piglets how to find the accessible bowl of milk.

Piglets can't utilize extra-maze cues (such as a picture on a wall) like mice do because pigs tend to keep their nose to the floor. In order to create cues, researchers covered the opening of each maze arm with a blue or white curtain. The piglets learned color cues to remember where to find milk. In the first test, the blue curtain contained the bowl with milk.

"The piglets learned quickly after day one where to find their reward," Johnson said. "This simple associative learning task was not hard for them to complete.

"But then, we did a reversal learning test where the white curtain became the entrance to the cup of accessible milk. This was more complicated because the piglets had to learn to stop going to the blue and then associate white with milk. It required a greater cognitive load, but it was one that they learned over time."

Researchers also investigated how peripheral immune activation affects cognitive processing. One group of piglets received an immunostimulant to mimic a common viral infection. These pigs experienced cognitive deficits, requiring more time to complete the reversal learning test.

"When the immune system encounters an infectious agent, it responds and conveys information to the brain," he said. "We were able to show that when the peripheral immune system conveyed information to the brain in the neonate, their cognitive abilities were hindered. That reveals another advantage of the neonatal piglet model."

The viral mimetic also increased pro-inflammatory cytokines in the hippocampus, a brain area involved in certain types of learning and memory. Pro-inflammatory cytokines in the hippocampus inhibit memory consolidation, making it more difficult to learn, Johnson added.

The Johnson lab is currently using MRI imaging to study brain development in piglets from two weeks of age until the piglets reach sexual maturity or an adolescent stage.

Results of this research project, "Behavioral assessment of cognitive function using a translational neonatal piglet model," were published in Brain, Behavior, and Immunity. Researchers included Rodney Johnson and Ryan Dilger, both of the University of Illinois.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>