Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Phosphorus Index: Changes afoot

06.11.2012
Phosphorus (P) is both an essential nutrient in agricultural fields and a contributor to poor water quality in surface waters. To encourage improved P management in fields, the P Index was proposed as a risk assessment tool in 1992. After 20 years of use, modifications, and growing pains, does the P Index accurately assess the risk of P loss?

A special section being published next month in the Journal of Environmental Quality addresses that question. The collection of papers grew out of a symposium at the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 2011 Annual Meetings.

The section acknowledges the problems that have been encountered with P Index development and implementation, such as inconsistencies between state indices, and also suggests ways in which the indices can be tested against data or models to improve risk assessment and shape future indices.

The P Index was proposed in a 1992 symposium after people became aware of the environmental impacts of P loss from fields. Many farmers were applying manure or other biosolids to their fields at rates that over-applied P. Researchers realized that assessing the risk of P loss from those products was important to protect water quality.

The P Index tool was needed to connect various conditions because P loss is influenced by both site characteristics (e.g., soil test levels, connectivity to water) and the sources of P applied (e.g., inorganic fertilizer, organic sources). It was therefore a great improvement over the use of agronomic soil testing for P risk assessment.

"The objective of the original P Index was to identify fields that had high risk of P loss and then guide producers' decisions on implementing best management practices," says Nathan Nelson, ASA and SSSA member and co-author of the special section's introductory paper. "The P Index has developed into a widely used tool to identify appropriate management practices for P application and fields suitable for such application."

The original 1993 paper by Lemunyon and Gilbert laid out three short-term objectives for the P Index: 1) to develop a procedure to assess the risk for P leaving a site and traveling toward a water body; 2) to develop a method of identifying critical parameters that influence P loss; and 3) to select management practices that would decrease a site's vulnerability to P loss.

These objectives were to be met using fairly simple calculations that took into account both source factors and transport factors. Source factors included levels of P in the soil, rates of P fertilization, and methods or timing of P addition. Features such as soil erosion, runoff, and distance to streams composed the transport factors.

"P loss is high when you have both a lot of P present and an easy transport pathway," explains Nelson. "The index has been designed to evaluate the interaction between these different factors."

Because the P Index can be used to guide conservation practices, the USDA-National Resource Conservation Service (NRCS) adopted it as part of their management planning process. The NRCS, then, left it up to each state to develop their own P Index best suited for their environments and concerns.

"The P Index was meant to be something that could be easily computed with readily available data, so an NRCS agent would be able to obtain the necessary inputs," says Nelson. "But there are many different factors that influence P loss as you move from one physiographic region to the next. The differences in transport processes, soils, and landscapes in each state have led to 48 different versions of the P Index, and some of them are very different."

The inconsistencies of indices across states, along with a perceived lack of improvement in water quality in some regions, are now bringing the accuracy of the P Index into question. With different calculations in place, a set of factors may be categorized as low risk in one state and medium, or even high, risk in another. These discrepancies become especially obvious along state borders.

Researchers understand the need to improve P indices and have made it a priority to base any changes on sound scientific data. Efforts to preserve, evaluate, and improve the P index led the NRCS to release a Request for Proposals within the Conservation Innovation Grant Program. Three regional efforts were funded to evaluate and improve the indices in the Heartland, the Southern State, and the Chesapeake Bay regions of the U.S. Additionally, a national coordination project and two other state-level efforts (Ohio and Wisconsin) were recently funded through the Conservation Innovation Program.

While the final suggestions for the next generation of the P Index are likely a few years off, the research is currently underway. Due to variations in regional characteristics and the problems previously encountered by state boundaries, it is likely that suggestions for improved indices will be based on regional distinctions, Nelson says. The objective is that the evaluations will lead to optimized P indices and better management tools that accurately incorporate site and source characteristics to predict the risk of P loss from fields.

"The scientific community backs the P Index as the best method to assess P loss risk," says Nelson. "The challenge now is to develop consistency in P indices across state boundaries and quantify the accuracy of P index risk assessments."

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/41/6/1703.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

Caroline Schneider | EurekAlert!
Further information:
http://www.agronomy.org/publications/jeq/abstracts/41/6/1703

More articles from Agricultural and Forestry Science:

nachricht 'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease
03.07.2015 | Penn State

nachricht A tale of 2 (soil) cities
02.07.2015 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>