Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide atrazine can turn male frogs into females

02.03.2010
Atrazine, one of the world's most widely used pesticides, wreaks havoc with the sex lives of adult male frogs, emasculating three-quarters of them and turning one in 10 into females, according to a new study by University of California, Berkeley, biologists.

The 75 percent that are chemically castrated are essentially "dead" because of their inability to reproduce in the wild, reports UC Berkeley's Tyrone B. Hayes, professor of integrative biology.

"These male frogs are missing testosterone and all the things that testosterone controls, including sperm. So their fertility is as low as 10 percent in some cases, and that is only if we isolate those animals and pair them with females," he said. "In an environment where they are competing with unexposed animals, they have zero chance of reproducing."

The 10 percent or more that turn from males into females ‑ something not known to occur under natural conditions in amphibians ‑ can successfully mate with male frogs but, because they are genetically male, all their offspring are male.

"When we grow these guys up, depending on the family, we will get anywhere from 10 to 50 percent females," Hayes said. "In a population, the genetically male females can decrease or wipe out a population just because they skew sex ratios so badly."

Though the experiments were performed on a common laboratory frog, the African clawed frog (Xenopus laevis), field studies indicate that atrazine, a potent endocrine disruptor, similarly affects frogs in the wild, and could possibly be one of the causes of amphibian declines around the globe, Hayes said.

Hayes and his UC Berkeley colleagues report their results in this week's online early edition of the journal Proceedings of the National Academy of Sciences. Last week, Hayes and colleagues published a review of pesticide's effects on amphibians in the Journal of Experimental Biology, concluding that atrazine is a likely contributor to worldwide amphibian declines.

"These kinds of problems, like sex-reversing animals skewing sex ratios, are much more dangerous than any chemical that would kill off a population of frogs," he said. "In exposed populations, it looks like there are frogs breeding but, in fact, the population is being very slowly degraded by the introduction of these altered animals."

Some 80 million pounds of the herbicide atrazine are applied annually in the United States on corn and sorghum to control weeds and increase crop yield, but such widespread use also makes atrazine the most common pesticide contaminant of ground and surface water, according to various studies.

More and more research, however, is showing that atrazine interferes with endocrine hormones, such as estrogen and testosterone – in fish, amphibians, birds, reptiles, laboratory rodents and even human cell lines at levels of parts per billion. Recent studies also found a possible link between human birth defects and low birth weight and atrazine exposure in the womb.

As a result of these studies, the Environmental Protection Agency (EPA) is reviewing its regulations on use of the pesticide. Several states are considering banning atrazine, and six class action lawsuits have been filed seeking to eliminate its use. The European Union already bars the use of atrazine.

Hayes's studies in the early 2000s were the first to show that the hormonal effects of atrazine disrupt sexual development in amphibians. Working with the African clawed frog, Hayes and his colleagues showed in 2002 that tadpoles raised in atrazine-contaminated water become hermaphrodites – they develop both female (ovaries) and male (testes) gonads. This occurred at atrazine levels as low as 0.1 parts per billion (ppb), 30 times lower than levels allowed in drinking water by the EPA (3 ppb).

Subsequent studies showed that native leopard frogs (Rana pipiens) collected from atrazine-contaminated streams in the Midwest, including from areas up to 1,000 miles from where atrazine is applied, often had eggs in their testes. And many males had lower testosterone levels than normal females and smaller than normal voice boxes, presumably limiting their ability to call mates.

Hayes' research also established that many frogs in Midwestern streams contaminated by atrazine and other pesticides have compromised immune systems, leading to increased mortality from bacterial disease.

Those early studies were hampered by the inability to easily distinguish genetically male from genetically female frogs. Male frogs have two identical sex chromosomes (ZZ) while females have both a Z and a W – the opposite of XX female and XY male humans. But because all frog chromosomes look the same under a light microscope, it's not simple to distinguish male from female.

To overcome this, Hayes' colleague Roger Liu developed a line of all-male frogs so that the genetics would be unequivocal.

"Before, we knew we got fewer males than we should have, and we got hermaphrodites. Now, we have clearly shown that many of these animals are sex-reversed males," Hayes said. "We have animals that are females, in the sense that they behave like females: They have estrogen, lay eggs, they mate with other males. Atrazine has caused a hormonal imbalance that has made them develop into the wrong sex, in terms of their genetic constitution."

Coincidentally, another lab in 2008 discovered a sex-linked genetic marker in Xenopus, which has allowed Hayes to confirm the genetic sex of his frogs.

In Hayes' study, where 40 frogs lived for about three years after hatching in water with 2.5 ppb atrazine, about 10 percent of the frogs appeared to be resistant to the effects of the pesticide. In ongoing studies, Hayes is investigating whether this apparent resistance is inherited, as well as whether the sex-reversed males have more susceptible offspring.

Syngenta, which manufactures atrazine, disputes many of these studies, including Hayes', that show adverse effects of the presticide. But Hayes said that "when you have studies all over the world showing problems with atrazine in every vertebrate that has been looked at – fish, frogs, reptiles, birds, mammals – all of them can't be wrong."

"What people have to realize is that, just as with taking pharmaceuticals, they have to decide whether the benefits outweigh the costs," he said. "Not every frog or every human will be affected by atrazine, but do you want to take a chance, what with all the other things that we know atrazine does, not just to humans but to rodents and frogs and fish?"

Hayes' long-term studies of the effects of atrazine on frogs have been assisted by many UC Berkeley undergraduate students, including co-authors on the current paper: Vicky Khoury, Anne Narayan, Mariam Nazir, Andrew Park, Lillian Adame, Elton Chan, and graduate students Travis Brown, Daniel Buchholz, Sherrie Gallipeau and Theresa Stueve.

The work was funded by the Park Water Co., Mitch Kapor, Freada Klein, the Mitch Kapor Foundation, the David Foundation, the Cornell-Douglas Foundation, the Wallace Foundation, the UC Berkeley Class of '43 endowed chair and the Howard Hughes Biology Fellows Program.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>