Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide atrazine can turn male frogs into females

02.03.2010
Atrazine, one of the world's most widely used pesticides, wreaks havoc with the sex lives of adult male frogs, emasculating three-quarters of them and turning one in 10 into females, according to a new study by University of California, Berkeley, biologists.

The 75 percent that are chemically castrated are essentially "dead" because of their inability to reproduce in the wild, reports UC Berkeley's Tyrone B. Hayes, professor of integrative biology.

"These male frogs are missing testosterone and all the things that testosterone controls, including sperm. So their fertility is as low as 10 percent in some cases, and that is only if we isolate those animals and pair them with females," he said. "In an environment where they are competing with unexposed animals, they have zero chance of reproducing."

The 10 percent or more that turn from males into females ‑ something not known to occur under natural conditions in amphibians ‑ can successfully mate with male frogs but, because they are genetically male, all their offspring are male.

"When we grow these guys up, depending on the family, we will get anywhere from 10 to 50 percent females," Hayes said. "In a population, the genetically male females can decrease or wipe out a population just because they skew sex ratios so badly."

Though the experiments were performed on a common laboratory frog, the African clawed frog (Xenopus laevis), field studies indicate that atrazine, a potent endocrine disruptor, similarly affects frogs in the wild, and could possibly be one of the causes of amphibian declines around the globe, Hayes said.

Hayes and his UC Berkeley colleagues report their results in this week's online early edition of the journal Proceedings of the National Academy of Sciences. Last week, Hayes and colleagues published a review of pesticide's effects on amphibians in the Journal of Experimental Biology, concluding that atrazine is a likely contributor to worldwide amphibian declines.

"These kinds of problems, like sex-reversing animals skewing sex ratios, are much more dangerous than any chemical that would kill off a population of frogs," he said. "In exposed populations, it looks like there are frogs breeding but, in fact, the population is being very slowly degraded by the introduction of these altered animals."

Some 80 million pounds of the herbicide atrazine are applied annually in the United States on corn and sorghum to control weeds and increase crop yield, but such widespread use also makes atrazine the most common pesticide contaminant of ground and surface water, according to various studies.

More and more research, however, is showing that atrazine interferes with endocrine hormones, such as estrogen and testosterone – in fish, amphibians, birds, reptiles, laboratory rodents and even human cell lines at levels of parts per billion. Recent studies also found a possible link between human birth defects and low birth weight and atrazine exposure in the womb.

As a result of these studies, the Environmental Protection Agency (EPA) is reviewing its regulations on use of the pesticide. Several states are considering banning atrazine, and six class action lawsuits have been filed seeking to eliminate its use. The European Union already bars the use of atrazine.

Hayes's studies in the early 2000s were the first to show that the hormonal effects of atrazine disrupt sexual development in amphibians. Working with the African clawed frog, Hayes and his colleagues showed in 2002 that tadpoles raised in atrazine-contaminated water become hermaphrodites – they develop both female (ovaries) and male (testes) gonads. This occurred at atrazine levels as low as 0.1 parts per billion (ppb), 30 times lower than levels allowed in drinking water by the EPA (3 ppb).

Subsequent studies showed that native leopard frogs (Rana pipiens) collected from atrazine-contaminated streams in the Midwest, including from areas up to 1,000 miles from where atrazine is applied, often had eggs in their testes. And many males had lower testosterone levels than normal females and smaller than normal voice boxes, presumably limiting their ability to call mates.

Hayes' research also established that many frogs in Midwestern streams contaminated by atrazine and other pesticides have compromised immune systems, leading to increased mortality from bacterial disease.

Those early studies were hampered by the inability to easily distinguish genetically male from genetically female frogs. Male frogs have two identical sex chromosomes (ZZ) while females have both a Z and a W – the opposite of XX female and XY male humans. But because all frog chromosomes look the same under a light microscope, it's not simple to distinguish male from female.

To overcome this, Hayes' colleague Roger Liu developed a line of all-male frogs so that the genetics would be unequivocal.

"Before, we knew we got fewer males than we should have, and we got hermaphrodites. Now, we have clearly shown that many of these animals are sex-reversed males," Hayes said. "We have animals that are females, in the sense that they behave like females: They have estrogen, lay eggs, they mate with other males. Atrazine has caused a hormonal imbalance that has made them develop into the wrong sex, in terms of their genetic constitution."

Coincidentally, another lab in 2008 discovered a sex-linked genetic marker in Xenopus, which has allowed Hayes to confirm the genetic sex of his frogs.

In Hayes' study, where 40 frogs lived for about three years after hatching in water with 2.5 ppb atrazine, about 10 percent of the frogs appeared to be resistant to the effects of the pesticide. In ongoing studies, Hayes is investigating whether this apparent resistance is inherited, as well as whether the sex-reversed males have more susceptible offspring.

Syngenta, which manufactures atrazine, disputes many of these studies, including Hayes', that show adverse effects of the presticide. But Hayes said that "when you have studies all over the world showing problems with atrazine in every vertebrate that has been looked at – fish, frogs, reptiles, birds, mammals – all of them can't be wrong."

"What people have to realize is that, just as with taking pharmaceuticals, they have to decide whether the benefits outweigh the costs," he said. "Not every frog or every human will be affected by atrazine, but do you want to take a chance, what with all the other things that we know atrazine does, not just to humans but to rodents and frogs and fish?"

Hayes' long-term studies of the effects of atrazine on frogs have been assisted by many UC Berkeley undergraduate students, including co-authors on the current paper: Vicky Khoury, Anne Narayan, Mariam Nazir, Andrew Park, Lillian Adame, Elton Chan, and graduate students Travis Brown, Daniel Buchholz, Sherrie Gallipeau and Theresa Stueve.

The work was funded by the Park Water Co., Mitch Kapor, Freada Klein, the Mitch Kapor Foundation, the David Foundation, the Cornell-Douglas Foundation, the Wallace Foundation, the UC Berkeley Class of '43 endowed chair and the Howard Hughes Biology Fellows Program.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>