Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periwinkle Plants Provide Ammunition in the War on Citrus Greening

27.04.2010
A team of scientists from the Agricultural Research Service (ARS) and the University of Florida’s Indian River Research and Education Center (IRREC) have turned an ornamental plant into a tool for combating a bacterial disease that threatens the world’s citrus crop.

Periwinkle (Catharanthus roseus) has proved to be an effective screening tool for treatments to control Huanglongbing (HLB), according to Yong-Ping Duan of the ARS U.S. Horticultural Research Laboratory (USHRL) in Fort Pierce, Fla.

HLB, also known as citrus greening, is one of the most destructive diseases of citrus worldwide. Caused by three closely related species of bacteria, there is no known cure for HLB and no established effective treatments. It remains a threat not only to the citrus industry in Florida, where it was discovered in 2005, but to citrus nationwide. The search for controls has been hampered in part because infected citrus plants are difficult to regenerate and study.

Duan and his colleagues have found that periwinkle performs well as a stand-in for citrus, becoming quickly infected with HLB bacterium and responding well to antibiotic compounds tested to reduce infection. Duan’s colleagues included William W. Turechek and Ed Stover, both at USHRL, and Mu-Qing Zhang, Lijuan Zhou and Charles A. Powell of IRREC.

The researchers used HLB-infected lemon trees to infect periwinkle plants and then ran greenhouse experiments to find the optimal nutrient and soil treatments for regenerating periwinkle with high infection rates. They also soaked infected periwinkle cuttings in different chemical compounds and found that two of them performed well as potential HLB treatments.

The team published the results in the journal Phytopathology. Duan emphasized that the results are limited to greenhouse settings and that the chemical compounds, penicillin G sodium and biocide 2,2-dibromo-3-nitrilopropionamide (DBNPA), must still be evaluated in field trials and approved for use by regulatory agencies before commercial use is possible.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). The research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Dennis O'Brien | Newswise Science News
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>