Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pear Pest's Chemical "Come Hither" Identified

05.07.2010
Pear psylla is a cicada-like pest with a vexing tendency to develop resistance to insecticides. But now, a new weapon could be in the works.

Agricultural Research Service (ARS) and University of California-Riverside (UCR) scientists have jointly identified a key component of the female psylla’s chemical sex attractant, or pheromone, which could set the stage for luring amorous males to their doom.

Entomologists Christelle Guédot, Dave Horton and Peter Landolt at the ARS Yakima Agricultural Research Laboratory in Wapato, Wash., discovered the compound, 13 methyl heptacosane (13-MeC27), in collaboration with Jocelyn Millar, a professor of entomology at UCR’s College of Natural and Agricultural Sciences.

Besides luring male psylla onto sticky traps, the compound’s discovery could give rise to lures for either monitoring the pest or disrupting its mating. Both approaches could diminish the reliance on insecticides—saving growers money, sparing beneficial insects, and forestalling the pest’s development of insecticide resistance.

Pear psylla’s most damaging stage is the nymph. The flat, red-eyed nymphal stage causes reductions in fruit quality as its honeydew drips onto and marks developing fruit. Heavy infestations cause premature leaf fall and loss of yield.

Researchers performed chemical analyses and behavioral assays to isolate and then identify the volatile chemicals extracted from female pear psylla that were most attractive to males. The team’s studies showed that 13-MeC27 was the most attractive of several chemicals evaluated. Laboratory assays were then done which confirmed that the attractiveness of the compound to males was equivalent to male response to females. Experiments in pear orchards confirmed that the compound is attractive to males and can be used to bait traps to capture pear psylla.

Under a patent application filed in September 2009 by ARS on behalf of the U.S. Department of Agriculture (USDA), the scientists intend to combine 13-MeC27 with other attractants to produce blends for use in pheromone dispensers, bait stations or traps.

The team published its findings in the Journal of Chemical Ecology.

ARS is USDA’s principal intramural scientific research agency. The research supports the USDA priority of promoting international food security.

Jan Suszkiw | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>