Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pear Pest's Chemical "Come Hither" Identified

05.07.2010
Pear psylla is a cicada-like pest with a vexing tendency to develop resistance to insecticides. But now, a new weapon could be in the works.

Agricultural Research Service (ARS) and University of California-Riverside (UCR) scientists have jointly identified a key component of the female psylla’s chemical sex attractant, or pheromone, which could set the stage for luring amorous males to their doom.

Entomologists Christelle Guédot, Dave Horton and Peter Landolt at the ARS Yakima Agricultural Research Laboratory in Wapato, Wash., discovered the compound, 13 methyl heptacosane (13-MeC27), in collaboration with Jocelyn Millar, a professor of entomology at UCR’s College of Natural and Agricultural Sciences.

Besides luring male psylla onto sticky traps, the compound’s discovery could give rise to lures for either monitoring the pest or disrupting its mating. Both approaches could diminish the reliance on insecticides—saving growers money, sparing beneficial insects, and forestalling the pest’s development of insecticide resistance.

Pear psylla’s most damaging stage is the nymph. The flat, red-eyed nymphal stage causes reductions in fruit quality as its honeydew drips onto and marks developing fruit. Heavy infestations cause premature leaf fall and loss of yield.

Researchers performed chemical analyses and behavioral assays to isolate and then identify the volatile chemicals extracted from female pear psylla that were most attractive to males. The team’s studies showed that 13-MeC27 was the most attractive of several chemicals evaluated. Laboratory assays were then done which confirmed that the attractiveness of the compound to males was equivalent to male response to females. Experiments in pear orchards confirmed that the compound is attractive to males and can be used to bait traps to capture pear psylla.

Under a patent application filed in September 2009 by ARS on behalf of the U.S. Department of Agriculture (USDA), the scientists intend to combine 13-MeC27 with other attractants to produce blends for use in pheromone dispensers, bait stations or traps.

The team published its findings in the Journal of Chemical Ecology.

ARS is USDA’s principal intramural scientific research agency. The research supports the USDA priority of promoting international food security.

Jan Suszkiw | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>