Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns of Ancient Croplands Give Insight Into Early Hawaiian Society

18.05.2011
A pattern of earthen berms, spread across a northern peninsula of the big island of Hawaii, is providing archeologists with clues to exactly how residents farmed in paradise long before Europeans arrived at the islands.

The findings suggest that simple, practical decisions made by individual households were eventually adopted by the ruling class as a means to improve agricultural productivity.

The research was reported in the latest issue of the journal Proceedings of the National Academy of Sciences.

“Archeologically, this kind of research is really hard to do in most places since there is rarely a ‘signature’ for the agricultural activity, or a strong connection between the remains of a house and a plot of farmland,” explained, Julie Field, an assistant professor of anthropology at Ohio State University.

Field, along with colleagues from California and New Zealand, has spent three field seasons unearthing the remnants of an agricultural gridwork that dates back nearly 600 years. The pattern was formed by a series of earthen walls, or berms, which served as windbreaks, protecting the crops.

“In this part of Hawaii, the trade winds blow all the time, so the berms are there to protect the crops from the winds,” she said. “The main crop was sweet potato which likes dry loose soil. The berms protect the soil from being blown away.”

The researchers are familiar with the challenges the winds posed. Field said that while they were excavating sites, the wind would “blow so hard, the skin would come off our ears if they weren’t covered. It just sandblasts your ears and you have to wear goggles to see.”

“It is an intense place to work,” she said.

Previous work by other researchers has radiocarbon dated organic material found in the berms, establishing a timeline for when the agricultural system was first built. Over time, more walls were built, subdividing the original agricultural plots into smaller and smaller parcels.

At the same time, other researchers were able to date materials from household sites of the early Hawaiians, and link those dates to the building of specific agricultural plots.

This showed that individual households that farmed the land expanded over time and then separated into new households as the population grew.

“Within a 300-year period, 1,400 AD to 1,700 AD, the data suggests that the population at least quadrupled, as did the number of houses,” Field said.

The researchers believe the data also provides insight into the structure of Hawaiian society at the time. “We know that there was a single chief for each district and a series of lesser chiefs below that,” she said.

Similar to the feudal system of Europe, a portion of the crop surplus was always designated for the chiefs.

“This suggests to us that the field system was originally put in place probably by individual households that produced crops for their own consumption.

“It was then appropriated by the chiefs and turned into more of a surplus production system, where they demanded that the land be put into production and more people would produce more surplus food,” she said.

“Our study is unique in that we can trace the activities of very, very small groups of people and, from that, try to glean the larger processes of society,” Field said.

“We want to look at parts of Hawaii and treat them as a model for the evolution of Hawaiian society.”

The researchers said that the next question is whether the field system was used seasonally, whether they modified it over the year and used different parts of it depending on the season.

“That’s what it looks like happened, but we need more dating of different features at the sites to be able to figure that out,” Field said.

The National Science Foundation provided support for the project. Along with Field, Patrick Kirch of the University of California, Berkeley, Thegn Ladefoged of the University of Auckland, New Zealand, Shripad Tuljapurkar and Peter Vitousek of Stanford University, and Oliver Chadwick of the University of California, Santa Barbara, worked on the project.

Contact: Julie Field, (614) 292-6233; field.59@osu.edu
Written by Earle Holland, (614) 292-8384: Holland.8@osu.edu

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>