Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns of Ancient Croplands Give Insight Into Early Hawaiian Society

18.05.2011
A pattern of earthen berms, spread across a northern peninsula of the big island of Hawaii, is providing archeologists with clues to exactly how residents farmed in paradise long before Europeans arrived at the islands.

The findings suggest that simple, practical decisions made by individual households were eventually adopted by the ruling class as a means to improve agricultural productivity.

The research was reported in the latest issue of the journal Proceedings of the National Academy of Sciences.

“Archeologically, this kind of research is really hard to do in most places since there is rarely a ‘signature’ for the agricultural activity, or a strong connection between the remains of a house and a plot of farmland,” explained, Julie Field, an assistant professor of anthropology at Ohio State University.

Field, along with colleagues from California and New Zealand, has spent three field seasons unearthing the remnants of an agricultural gridwork that dates back nearly 600 years. The pattern was formed by a series of earthen walls, or berms, which served as windbreaks, protecting the crops.

“In this part of Hawaii, the trade winds blow all the time, so the berms are there to protect the crops from the winds,” she said. “The main crop was sweet potato which likes dry loose soil. The berms protect the soil from being blown away.”

The researchers are familiar with the challenges the winds posed. Field said that while they were excavating sites, the wind would “blow so hard, the skin would come off our ears if they weren’t covered. It just sandblasts your ears and you have to wear goggles to see.”

“It is an intense place to work,” she said.

Previous work by other researchers has radiocarbon dated organic material found in the berms, establishing a timeline for when the agricultural system was first built. Over time, more walls were built, subdividing the original agricultural plots into smaller and smaller parcels.

At the same time, other researchers were able to date materials from household sites of the early Hawaiians, and link those dates to the building of specific agricultural plots.

This showed that individual households that farmed the land expanded over time and then separated into new households as the population grew.

“Within a 300-year period, 1,400 AD to 1,700 AD, the data suggests that the population at least quadrupled, as did the number of houses,” Field said.

The researchers believe the data also provides insight into the structure of Hawaiian society at the time. “We know that there was a single chief for each district and a series of lesser chiefs below that,” she said.

Similar to the feudal system of Europe, a portion of the crop surplus was always designated for the chiefs.

“This suggests to us that the field system was originally put in place probably by individual households that produced crops for their own consumption.

“It was then appropriated by the chiefs and turned into more of a surplus production system, where they demanded that the land be put into production and more people would produce more surplus food,” she said.

“Our study is unique in that we can trace the activities of very, very small groups of people and, from that, try to glean the larger processes of society,” Field said.

“We want to look at parts of Hawaii and treat them as a model for the evolution of Hawaiian society.”

The researchers said that the next question is whether the field system was used seasonally, whether they modified it over the year and used different parts of it depending on the season.

“That’s what it looks like happened, but we need more dating of different features at the sites to be able to figure that out,” Field said.

The National Science Foundation provided support for the project. Along with Field, Patrick Kirch of the University of California, Berkeley, Thegn Ladefoged of the University of Auckland, New Zealand, Shripad Tuljapurkar and Peter Vitousek of Stanford University, and Oliver Chadwick of the University of California, Santa Barbara, worked on the project.

Contact: Julie Field, (614) 292-6233; field.59@osu.edu
Written by Earle Holland, (614) 292-8384: Holland.8@osu.edu

Earle Holland | Newswise Science News
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>