Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pacific Northwest trees struggle for water while standing in it

26.07.2011
Contrary to expectations, researchers have discovered that the conifers of the Pacific Northwest, some of the tallest trees in the world, face their greatest water stress during the region’s eternally wet winters, not the dog days of August when weeks can pass without rain.

Due to freeze-thaw cycles in winter, water flow is disrupted when air bubbles form in the conductive xylem of the trees. Because of that, some of these tall conifers are seriously stressed for water when they are practically standing in a lake of it, scientists from Oregon State University and the U.S. Forest Service concluded in a recent study.

It’s not “drought stress” in a traditional sense, the researchers said, but the end result is similar. Trees such as Douglas-fir actually do better dealing with water issues during summer when they simply close down their stomata, conserve water and reduce their photosynthesis and growth rate.

“Everyone thinks that summer is the most stressful season for these trees, but in terms of water, winter can be even more stressful,” said Katherine McCulloh, a research assistant professor in the OSU Department of Forest Ecosystems and Society.

“We’ve seen trees in standing water, at a site that gets more than two meters of rain a year, yet the xylem in the small branches at the tops of these trees can’t transport as much water as during the summer,” McCulloh said.

The ease with which water moves through wood is measured as the “hydraulic conductivity,” and researchers generally had believed this conductivity would be the lowest during a conventional drought in the middle of summer. They found that wasn’t the case.

“We thought if there was a serious decline in conductivity it would have been from drought,” said Rick Meinzer, a researcher with the Pacific Northwest Research Station of the USDA Forest Service, as well as OSU. “It was known that air bubbles could form as increased tension is needed in the xylem to pull water higher and higher. But it turns out that freezing and thawing caused the most problems for water transport.”

Studies such as this are important, the scientists said, to better understand how forests might respond to a warmer or drier climate of the future. And although this might imply that these conifers could be more resistant to drought than had been anticipated, the researchers said it’s not that simple.

“If the climate warms, we might actually get more of these winter cycles of freezing and thawing,” McCulloh said. “There’s a lot of variability in the effects of climate we still don’t understand.

“One of the most amazing things these trees can do is recover from these declines in conductivity by replacing the air bubbles with water,” she said. “We don’t understand how they do that at the significant tensions that exist at those heights. We’re talking about negative pressures or tensions roughly three times the magnitude of what you put in your car tires.”

When the field research on this study was done in 2009, the area actually experienced a historic heat wave during August when temperatures in the Willamette Valley hit 108 degrees. During such extreme heat, trees experienced some loss of hydraulic conductivity but largely recovered even before rains came in September. By contrast, greater loss of hydraulic conductivity was observed in the middle of winter.

The study was done at the Wind River Canopy Crane Research Facility, and published in the American Journal of Botany. The research was supported by the National Science Foundation.

“The commonly held view is that the summer months of the Pacific Northwest are extremely stressful to plants,” the researchers wrote in their conclusion.

“Yet, our results indicated that the winter months are more stressful in terms of hydraulic function, and suggest that perhaps an inability to recover from increase in native embolism rates over the winter may cause greater branch dieback in old-growth trees than shifts in summer climate.”

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Kate McCulloh | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>