Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pacific Northwest trees struggle for water while standing in it

26.07.2011
Contrary to expectations, researchers have discovered that the conifers of the Pacific Northwest, some of the tallest trees in the world, face their greatest water stress during the region’s eternally wet winters, not the dog days of August when weeks can pass without rain.

Due to freeze-thaw cycles in winter, water flow is disrupted when air bubbles form in the conductive xylem of the trees. Because of that, some of these tall conifers are seriously stressed for water when they are practically standing in a lake of it, scientists from Oregon State University and the U.S. Forest Service concluded in a recent study.

It’s not “drought stress” in a traditional sense, the researchers said, but the end result is similar. Trees such as Douglas-fir actually do better dealing with water issues during summer when they simply close down their stomata, conserve water and reduce their photosynthesis and growth rate.

“Everyone thinks that summer is the most stressful season for these trees, but in terms of water, winter can be even more stressful,” said Katherine McCulloh, a research assistant professor in the OSU Department of Forest Ecosystems and Society.

“We’ve seen trees in standing water, at a site that gets more than two meters of rain a year, yet the xylem in the small branches at the tops of these trees can’t transport as much water as during the summer,” McCulloh said.

The ease with which water moves through wood is measured as the “hydraulic conductivity,” and researchers generally had believed this conductivity would be the lowest during a conventional drought in the middle of summer. They found that wasn’t the case.

“We thought if there was a serious decline in conductivity it would have been from drought,” said Rick Meinzer, a researcher with the Pacific Northwest Research Station of the USDA Forest Service, as well as OSU. “It was known that air bubbles could form as increased tension is needed in the xylem to pull water higher and higher. But it turns out that freezing and thawing caused the most problems for water transport.”

Studies such as this are important, the scientists said, to better understand how forests might respond to a warmer or drier climate of the future. And although this might imply that these conifers could be more resistant to drought than had been anticipated, the researchers said it’s not that simple.

“If the climate warms, we might actually get more of these winter cycles of freezing and thawing,” McCulloh said. “There’s a lot of variability in the effects of climate we still don’t understand.

“One of the most amazing things these trees can do is recover from these declines in conductivity by replacing the air bubbles with water,” she said. “We don’t understand how they do that at the significant tensions that exist at those heights. We’re talking about negative pressures or tensions roughly three times the magnitude of what you put in your car tires.”

When the field research on this study was done in 2009, the area actually experienced a historic heat wave during August when temperatures in the Willamette Valley hit 108 degrees. During such extreme heat, trees experienced some loss of hydraulic conductivity but largely recovered even before rains came in September. By contrast, greater loss of hydraulic conductivity was observed in the middle of winter.

The study was done at the Wind River Canopy Crane Research Facility, and published in the American Journal of Botany. The research was supported by the National Science Foundation.

“The commonly held view is that the summer months of the Pacific Northwest are extremely stressful to plants,” the researchers wrote in their conclusion.

“Yet, our results indicated that the winter months are more stressful in terms of hydraulic function, and suggest that perhaps an inability to recover from increase in native embolism rates over the winter may cause greater branch dieback in old-growth trees than shifts in summer climate.”

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Kate McCulloh | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>