Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Over-use of organic fertilisers in agriculture could poison soils

Excessive doses of organic residues in agricultural fields could be dangerous for plants, invertebrates and micro-organisms living in the soil. This is the finding of a study carried out by the Autonomous University of Barcelona (UAB), which has shown that the use of appropriate levels of fertilisers would prevent this toxic impact on the soil biota.

Although controlled amounts of organic residues, sewage sludge and animal waste are a good choice for soil fertilisation, they can have damaging effects on soil biota when applied in excessive doses. In an effort to prevent these toxic impacts on soil, a team of researchers from the UAB’s Centre for Ecological Research and Forestry Applications (CREAF) has carried out a test that sets the maximum safe doses for organic fertilisers.

“We based this on bio-trials in the laboratory using soil-based organisms that are representative of agro-ecosystems, and which need to be protected: plants (Brassica rapa, Lolium perenne and Trifolium pratense), earthworms, annelids, collembola and micro-organisms,” the study’s lead author Xavier Domene told SINC.

The research, which has been published in the magazine Environmental Pollution, shows that the low levels of stability in the residues used is one of the main reasons for their damaging effects on plants and animals. “The rapid decomposition of the residue in the ground generates substances such as ammonia, which is the main cause of the toxic effects observed,” said Domene.

Finding a safe dose

The research group established a “safe dose” for each of the seven residues analysed (two kinds of dehydrated sewage sludge, two kinds of composted mud, two kinds of heat-dried mud, and one sample of heat-dried pig waste).

The researchers believe that using these residues in agricultural fields at levels below this cut-off limit would protect 95% of the species potentially present within an agro-ecosystem. The study goes on to explain that by comparing the safe dose with the amounts usually used it is possible to assess the potential impact on soil biota.

The European Union currently produces a great range of organic residues, using a variety of treatment technologies that minimise their volume and make them easier to handle. According to the researchers, “eco-toxicological criteria should also be included in legislation in order to prevent the environmental impact caused by the use of organic residues”.

SINC Team | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>