Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Orangutans plan their future route and communicate it to others

Male orangutans plan their travel route up to one day in advance and communicate it to other members of their species.

In order to attract females and repel male rivals, they call in the direction in which they are going to travel. Anthropologists at the University of Zurich have found that not only captive, but also wild-living orangutans make use of their planning ability.

Male Orang Utan
Picture: UZH

Examples of the daily travel routes of the orangutans observed. The green arrows show spontaneous long calls, while the red arrows mark response calls to the noises emitted by other males.
Picture: UZH

For a long time it was thought that only humans had the ability to anticipate future actions, whereas animals are caught in the here and now. But in recent years, clever experiments with great apes in zoos have shown that they do remember past events and can plan for their future needs. Anthropologists at the University of Zurich have now investigated whether wild apes also have this skill, following them for several years through the dense tropical swamplands of Sumatra.

Orangutans communicate their plans
Orangutans generally journey through the forest alone, but they also maintain social relationships. Adult males sometimes emit loud ‘long calls’ to attract females and repel rivals. Their cheek pads act as a funnel for amplifying the sound in the same way as a megaphone. Females that only hear a faint call come closer in order not to lose contact. Non-dominant males on the other hand hurry in the opposite direction if they hear the call coming loud and clear in their direction.

“To optimize the effect of these calls, it thus would make sense for the male to call in the direction of his future whereabouts, if he already knew about them”, explains Carel van Schaik. “We then actually observed that the males traveled for several hours in approximately the same direction as they had called.” In extreme cases, long calls made around nesting time in the evening predicted the travel direction better than random until the evening of the next day. Carel van Schaik and his team conclude that orangutans plan their route up to a day ahead. In addition, the males often announced changes in travel direction with a new, better-fitting long call. The researchers also found that in the morning, the other orangutans reacted correctly to the long call of the previous evening, even if no new long call was emitted. “Our study makes it clear that wild orangutans do not simply live in the here and now, but can imagine a future and even announce their plans. In this sense, then, they have become a bit more like us”, concludes Carel van Schaik.

Carel P. van Schaik, Laura Damerius, Karin Isler. Wild Orangutan Males Plan and Communicate Their Travel Direction One Day in Advance. PLOS ONE. September 11, 3013.
About the authors
All three authors of the study are based at the Anthropological Institute and Museum of the University of Zurich. Carel van Schaik is the Director and has observed orangutans in the wild for many years. He maintains two field sites, one in Borneo and one in Sumatra. Laura Damerius carried out a pilot project for this study as part of her master’s thesis and is now working on her dissertation about the behavior of wild-living orangutans. Karin Isler studies the evolution of cognitive abilities of primates, mammals and birds.
Prof. Dr. Carel van Schaik
Anthropological Institute and Museum
University of Zurich
Phone: +41 44 635 54 10

Nathalie Huber | Universität Zürich
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>