Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Fish, Two Fish ─ Camera Counts Freshwater Fish, Which Could Help Combat Hydrilla

26.01.2015

A camera can accurately count freshwater fish, even in the thickest of underwater vegetation, a key finding for those who manage fisheries and control the invasive plant hydrilla, new University of Florida research shows.

The finding by UF/IFAS scientists can help researchers understand how many and which fish species are using dense plant habitats, said former UF/IFAS graduate student Kyle Wilson.


Former UF/IFAS doctoral student Andrew Barbour.

Former UF/IFAS graduate student Kyle Wilson prepares a equipment for his fish count

While cameras have been used to document fish behavior – including eating and breeding ─ this marks the first time scientists have used video to count fish in underwater plant habitats, Wilson said. In addition, no prior studies that used cameras to count fish verified their fish populations.

“It is commonly assumed that dense and invasive plants, like hydrilla, can drastically change fish habitat quality, primarily through changes in dissolved oxygen levels, water chemistry and habitat structure,” Wilson said. “Whether these changes are good or bad for fish has previously remained uncertain due to sampling problems in dense plant habitats. Using underwater cameras, we have shown that fish can and do use habitats we previously thought were too stressful for fish habitat.”

This is a big problem, especially with hydrilla, a plant that has invaded lakes throughout Florida, much of the U.S., Central America, South Africa and Australia, Wilson said. He estimated Florida spent up to $14 million per year throughout the 2000s to manage hydrilla, while the U.S. spent about $100 million per year in the 2000s for aquatic plant management.

In practical terms, researchers and conservation managers could use the UF/IFAS techniques to better understand how fish use other invasive aquatic plants as well, like Eurasian Watermilfoil, because it’s similar to hydrilla, Wilson said. Such approaches can be quite valuable in advising conservation plans and can help resolve stakeholder issues associated with these invasive plants.

“This ability to use video cameras to estimate fish abundance is a tremendous asset to fisheries management, allowing us to evaluate fish habitat use in areas where previously no sampling method was effective,” Wilson said. Australian researchers studying fish ecology have used cameras to count fish in the relatively clear waters at the Great Barrier Reef, but no research has peered through a lens to detect fish in thick vegetation like this study. “Previously, researchers that used cameras have had to make several broad assumptions that cameras work well in sampling fish. Now we know they work well.”

UF/IFAS researchers specifically focused their study on ponds with plenty of hydrilla, Wilson said, but have also conducted preliminary camera work on Lake Tohopekaliga in the Kissimmee Chain of Lakes Area.

To research his master’s thesis, Wilson lowered a camera into the water from a boat in three experimental ponds in Gainesville. He discovered the video counted freshwater fish, such as largemouth bass and bluegill sunfish – even those hidden in the nooks and crannies of hydrilla and other vegetation. Wilson counted fish during 13 weeks in the summers of 2011 and 2012, and then drained the ponds to obtain actual fish densities.
He conducted his research under the supervision of Micheal Allen, a professor of fisheries ecology at UF’s Institute of Food and Agricultural Sciences.

“We tested and verified the use of our camera techniques in extremely dense hydrilla habitats,” said Wilson, now a doctoral student in ecology at the University of Calgary.
The UF/IFAS study is published in the January issue of the journal Marine and Freshwater Research.

By Brad Buck, 352-294-3303, bradbuck@ufl.edu
Sources: Kyle Wilson, 403-402-4955, wilsok@ucalgary.ca
Micheal Allen, 352-273-3624, msal@ufl.edu

Brad Buck | newswise
Further information:
http://www.ufl.edu

Further reports about: Fish aquatic cameras ecology invasive invasive plants underwater

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>