Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the trail of a trace gas

21.04.2015

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as meteorological data about temperature, humidity or air flow is included in these models.


In order to determine the amounts of nitrogen oxide, meteorological data are needed. Thus the researchers launched weather ballons in the desert.

Buhalqem Mamtimin, MPI for Chemistry.


Nitric oxide was measured in chambers on the surface and it was collected by small air funnels that could be positioned at different heights above the ground.

Buhalqem Mamtimin, MPI for Chemistry.

Also, as accurate as possible values of emissions of trace gases such as ozone or nitrogen oxides, which have an impact on air quality, are taken into account. In simple terms, one could say that the statements derived from the model are more reliable, the more accurate the underlying data are.

Nitrogen dioxide (NO2) is a gas relevant to air quality which, for example, has an impact on the ozone content of the troposphere. The troposphere is the lowest layer of the Earth’s atmosphere.

The gas is primarily produced during the combustion of fossil fuels such as oil, coal or gas; however, it also forms indirectly via microbial processes in the ground, as micro organisms form nitric oxide (NO). In the air, NO reacts with ozone within minutes to form NO2. However, as the activity of microorganisms is strongly influenced by factors such as irrigation, fertilization and temperature, NO levels that are released from the ground can change within days.

To date there is little accurate information available about how much NO is emitted from specific soils and what influence usage has on this.

Buhalqem Mamtimin from the Max Planck Institute for Chemistry wants to change this. Since 2008, together with her colleagues, the researcher has been investigating the issue of how much NO is e.g. released from intensively farmed soils, and the percentage of NO2 in the troposphere as a result of this.

This sounds easy in theory, however, has proved rather complex in practice. Worldwide there are only few farming areas which are far away from other NO sources such as industrial cities, power plants and traffic. Only in such regions one can accurately determine the level of agricultural NO emissions.

The researchers found such a region in the Taklamakan Desert, in the north-west of China. The desert is located in the Uighur region Xinjiang, with Urumqi as the capital, and also happens to be the native country of Buhalqem Mamtimin. The Taklamakan Desert is bordered in the South and the North by the former Silk Road; since the 1950s huge agricultural oases have been operated here.

The researchers decided on the extremely remote Milan Oasis, where, on an area of about 100 square kilometers, cotton wool and jujube is grown, a stone fruit which is also known as the Chinese date. Both plant species love high temperatures and thrive well in the arid desert ground, if they receive good fertilization and irrigation.

The danger of measuring NO from anthropogenic sources at the same time could be discounted by the researchers, as the “Milan” is surrounded by desert and mountains and the next oasis is many kilometers away. Additionally, the electric energy is only generated from hydro-power, and mainly electric vehicles are used.

To achieve the most accurate statements about the NO emissions, the researchers traveled a total of three times to the Milan Oasis and applied different, independent procedures. For one, they took soil samples from different areas in the oasis. They brought these to the Mainz laboratory and examined how much NO is emitted from an exactly defined soil quantity into the air.

During the following visits, Mamtimin and her colleagues also performed two types of measurements on-site: For this, they used spectrometers at defined points in the oasis. The analysis is based on the fact that NO2, just like all molecules, has an individual absorption spectrum of light, with which one can determine the NO2 concentrations from the atmospheric measuring spectra.

They also measured the NO emissions from the soil directly: Ambient air was constantly pumped through small measuring chambers on the ground and the difference in concentration between the input and output air was measured.

The scientists checked the values measured on-site and in the laboratory by means of NO dispersion values, which they had computed using three-dimensional models. Satellite images were helpful for determining what type of crop was being cultivated at which location in the oasis and how large the relevant fields were.

From all parameters, the researchers e.g. determined how much NOx is being emitted from the cotton fields. And these figures are astounding: Per second, one square meter emits between 10 and 30 nanogram of NO. Compared to a typical European wheat field, this amount is five to ten times higher.

Mamtimin is not surprised about these high amounts, as the oases are intensively fertilized with up to 600 kilogram of nitrogen per year and hectare, and well irrigated. The high temperatures in the desert region also ensure that the microorganisms in the soil are particularly active and emit a lot of NO, which enters the air from the ground.

As cotton wool production in and around the Taklamakan Desert accounts for approximately 80 percent of the Chinese total production, Mamtimin and her colleagues concluded that the agricultural NO emissions are comparable with emissions from traffic and industry in the region, and even exceed these. This is an important finding for the determination of the regional air quality, as experts assume that China will significantly increase its agricultural production in the coming years, and therefore even more biogenic NO in the atmosphere is to be expected.

In future studies, Mamtimin and her colleagues will focus on other arid regions for their nitrogen oxide analyses, with both biogenic and strong anthropogenic emission sources. The researcher is currently planning measurements in Kazakhstan and Uzbekistan - both countries in which land use is similar to that in the Taklamakan Desert and in which the metropolises already have high levels of air pollution.

The studies by Mamtimin and her colleagues were funded by both the German Research Association (DFG MA 4798/1-1) and the Max Planck Society.

Original publication

B. Mamtimin, T. Behrendt, M. M. Badawy, T. Wagner, Y. Qi, Z. Wu, and F. X. Meixner, Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory-derived NO emission from soil sample. Atmos. Chem. Phys., 15, 867–882, 2015

Profile Buhalqem Mamtimin
The Max Planck researcher B. Mamtimin was born and raised in a small town near Urumqi, the capital of the Chinese Xinjiang region. After finishing school, she studied Geo Sciences in Shanghai. Thereafter, she has taught Climatology and Meteorology courses at the Xinjiang Normal University in Urumqi in the Department of Geo Sciences.

In 2000, she came to Mainz and joined the Department of Geo Sciences at the Johannes Gutenberg University where she continued her PhD thesis on “Climate of arid and semi-arid regions and the possibilities of sustainable agriculture utilization” which was funded by the German Catholic Academic Foreigner Services (KAAD).

Since her doctoral thesis, the mother of two first worked as a scientist at the Johannes Gutenberg University Mainz, and later in the Department of Biogeochemistry at the Max Planck Institute for Chemistry. She is currently conducting research in the “Satellite remote sensing” group.

In addition to her mother tongue Uyghur, 45-year old Mamtimin is fluent in German, English, Chinese, Uzbek, Kazakh and Turkish.

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/auf-den-spuren-eines-spurengas...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>