Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil Spray Reduces Greenhouse Gas Emissions from Pig Finishing Barns

09.12.2008
A recent study in Missouri reveals an effective way to lower air pollution from animal feeding operations.

Animal feeding operations are an important emission source of air pollutants including methane and carbon dioxide—known greenhouse gases. Recent inventories suggest that animal manure makes a significant contribution to global methane emissions.

As a consequence, greenhouse gas emissions can potentially become a limiting factor in the development and sustainability of animal production and technologies are needed to mitigate pollutant gas emissions. Oil spray has been used as a mitigation technique to reduce pollution from animal buildings. However, little is known about its effect on greenhouse gas emissions.

Scientists at Purdue University and the University of Missouri have investigated oil spray on air pollutant emissions from pig barns in northern Missouri. Specifically, they studied the quantity and characteristics of methane and carbon dioxide emissions from two commercial pig finishing barns and tested three oil spray techniques—vegetable oil sprinkling, essential oil misting, and misting of essential oil with water—to reduce these emissions. Results from the study were published in the November-December issue of Journal of Environmental Quality.

The study revealed average emissions of 32.5 g methane and 15.8 g carbon dioxide per day per animal unit (500 kg animal live weight) from the two barns. Treatments of oil sprinkling, misting of essential oils, and misting of essential oils with water reduced the average emissions of methane by 20% and of carbon dioxide by 19%. Barn methane and carbon dioxide concentrations and emission rates were affected by diel and seasonal fluctuations of ambient temperature. Methane was produced from decomposing manure and released from recycled lagoon effluent during barn gutter flushing. Carbon dioxide was produced from pig exhalation, manure decomposition, and combustion heaters and was also released from recycled lagoon effluent. The flushing lagoon effluent was responsible for 9.8 % of methane and 4.1 % of carbon dioxide in the total barn emissions.

A state-of-the-art mobile laboratory monitoring system was set up between two barns and connected to the barns via tubing and cables. One barn was used as control and another was treated with the three oil spray techniques, one after another for a total of 247 days. Air samples were taken at the exhaust fans of the two barns and from outdoor background and pumped into the mobile laboratory via tubing. Concentrations of methane and carbon dioxide in the sample air were measured continuously with two gas analyzers. Air sampling and measurement were conducted 18 times daily to cover diel variations. Ventilation fans were monitored for gas emission calculations. Barn temperature, relative humidity, animal activity, barn space heaters, manure flushing, and weather conditions were also continuously monitored. The field investigation was conducted from August 2002 to July 2003 to cover seasonal variations.

Quantification and mitigation of air pollution from animal feeding operations helps researchers to understand and reduce the industry’s negative impact on local and global environments. Research on greenhouse gases and other pollutants emissions from animal barns of different animal species is ongoing at Purdue University in collaboration with other universities in the U.S. Mitigation technology development will be one of the research focuses in this field. Further study on oil spray in animal barns is needed to optimize its application method for better effects on reducing emissions of not only greenhouse gases but also particulate matter and odor.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/37/6/2001

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org
http://jeq.scijournals.org/cgi/content/abstract/37/6/2001

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>