Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil Spray Reduces Greenhouse Gas Emissions from Pig Finishing Barns

09.12.2008
A recent study in Missouri reveals an effective way to lower air pollution from animal feeding operations.

Animal feeding operations are an important emission source of air pollutants including methane and carbon dioxide—known greenhouse gases. Recent inventories suggest that animal manure makes a significant contribution to global methane emissions.

As a consequence, greenhouse gas emissions can potentially become a limiting factor in the development and sustainability of animal production and technologies are needed to mitigate pollutant gas emissions. Oil spray has been used as a mitigation technique to reduce pollution from animal buildings. However, little is known about its effect on greenhouse gas emissions.

Scientists at Purdue University and the University of Missouri have investigated oil spray on air pollutant emissions from pig barns in northern Missouri. Specifically, they studied the quantity and characteristics of methane and carbon dioxide emissions from two commercial pig finishing barns and tested three oil spray techniques—vegetable oil sprinkling, essential oil misting, and misting of essential oil with water—to reduce these emissions. Results from the study were published in the November-December issue of Journal of Environmental Quality.

The study revealed average emissions of 32.5 g methane and 15.8 g carbon dioxide per day per animal unit (500 kg animal live weight) from the two barns. Treatments of oil sprinkling, misting of essential oils, and misting of essential oils with water reduced the average emissions of methane by 20% and of carbon dioxide by 19%. Barn methane and carbon dioxide concentrations and emission rates were affected by diel and seasonal fluctuations of ambient temperature. Methane was produced from decomposing manure and released from recycled lagoon effluent during barn gutter flushing. Carbon dioxide was produced from pig exhalation, manure decomposition, and combustion heaters and was also released from recycled lagoon effluent. The flushing lagoon effluent was responsible for 9.8 % of methane and 4.1 % of carbon dioxide in the total barn emissions.

A state-of-the-art mobile laboratory monitoring system was set up between two barns and connected to the barns via tubing and cables. One barn was used as control and another was treated with the three oil spray techniques, one after another for a total of 247 days. Air samples were taken at the exhaust fans of the two barns and from outdoor background and pumped into the mobile laboratory via tubing. Concentrations of methane and carbon dioxide in the sample air were measured continuously with two gas analyzers. Air sampling and measurement were conducted 18 times daily to cover diel variations. Ventilation fans were monitored for gas emission calculations. Barn temperature, relative humidity, animal activity, barn space heaters, manure flushing, and weather conditions were also continuously monitored. The field investigation was conducted from August 2002 to July 2003 to cover seasonal variations.

Quantification and mitigation of air pollution from animal feeding operations helps researchers to understand and reduce the industry’s negative impact on local and global environments. Research on greenhouse gases and other pollutants emissions from animal barns of different animal species is ongoing at Purdue University in collaboration with other universities in the U.S. Mitigation technology development will be one of the research focuses in this field. Further study on oil spray in animal barns is needed to optimize its application method for better effects on reducing emissions of not only greenhouse gases but also particulate matter and odor.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/37/6/2001

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org
http://jeq.scijournals.org/cgi/content/abstract/37/6/2001

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>