Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil Spray Reduces Greenhouse Gas Emissions from Pig Finishing Barns

09.12.2008
A recent study in Missouri reveals an effective way to lower air pollution from animal feeding operations.

Animal feeding operations are an important emission source of air pollutants including methane and carbon dioxide—known greenhouse gases. Recent inventories suggest that animal manure makes a significant contribution to global methane emissions.

As a consequence, greenhouse gas emissions can potentially become a limiting factor in the development and sustainability of animal production and technologies are needed to mitigate pollutant gas emissions. Oil spray has been used as a mitigation technique to reduce pollution from animal buildings. However, little is known about its effect on greenhouse gas emissions.

Scientists at Purdue University and the University of Missouri have investigated oil spray on air pollutant emissions from pig barns in northern Missouri. Specifically, they studied the quantity and characteristics of methane and carbon dioxide emissions from two commercial pig finishing barns and tested three oil spray techniques—vegetable oil sprinkling, essential oil misting, and misting of essential oil with water—to reduce these emissions. Results from the study were published in the November-December issue of Journal of Environmental Quality.

The study revealed average emissions of 32.5 g methane and 15.8 g carbon dioxide per day per animal unit (500 kg animal live weight) from the two barns. Treatments of oil sprinkling, misting of essential oils, and misting of essential oils with water reduced the average emissions of methane by 20% and of carbon dioxide by 19%. Barn methane and carbon dioxide concentrations and emission rates were affected by diel and seasonal fluctuations of ambient temperature. Methane was produced from decomposing manure and released from recycled lagoon effluent during barn gutter flushing. Carbon dioxide was produced from pig exhalation, manure decomposition, and combustion heaters and was also released from recycled lagoon effluent. The flushing lagoon effluent was responsible for 9.8 % of methane and 4.1 % of carbon dioxide in the total barn emissions.

A state-of-the-art mobile laboratory monitoring system was set up between two barns and connected to the barns via tubing and cables. One barn was used as control and another was treated with the three oil spray techniques, one after another for a total of 247 days. Air samples were taken at the exhaust fans of the two barns and from outdoor background and pumped into the mobile laboratory via tubing. Concentrations of methane and carbon dioxide in the sample air were measured continuously with two gas analyzers. Air sampling and measurement were conducted 18 times daily to cover diel variations. Ventilation fans were monitored for gas emission calculations. Barn temperature, relative humidity, animal activity, barn space heaters, manure flushing, and weather conditions were also continuously monitored. The field investigation was conducted from August 2002 to July 2003 to cover seasonal variations.

Quantification and mitigation of air pollution from animal feeding operations helps researchers to understand and reduce the industry’s negative impact on local and global environments. Research on greenhouse gases and other pollutants emissions from animal barns of different animal species is ongoing at Purdue University in collaboration with other universities in the U.S. Mitigation technology development will be one of the research focuses in this field. Further study on oil spray in animal barns is needed to optimize its application method for better effects on reducing emissions of not only greenhouse gases but also particulate matter and odor.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/37/6/2001

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org
http://jeq.scijournals.org/cgi/content/abstract/37/6/2001

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>