Oil seed rape grown for biofuel can help clean up toxic soils

Using plants to help clean up heavily polluted soils has been successfully tested for many years and shown to be a cheap and environmentally friendly way to clear heavy metals such as arsenic, copper, zinc and chromium from contaminated land.

The main problem with the method has been the amount of time it takes to grow successive crops of plants to clean up an area. Now scientists may have come up with a solution by combining heavy metal tolerant bacteria with plants used to make biofuels such as oil seed rape.

“We discovered that inoculating the plants with metal resistant bacteria provided them with sufficient protection that their seeds germinated better and their growth was enhanced. The plant leaves accumulate the metals, the bacteria deal with the contamination, and the plants seem to benefit from some of their activity,” says Olivia Odhiambo from the Institute of Technology, Carlow, Ireland.

Oilseed rape is a member of the Brassica family, which also includes cabbages and Brussels sprouts. It is well suited to Irish growing conditions and is already widely grown by farmers for biodiesel production.

“As some of the bacterial strains we tested are showing enhanced growth properties in the crop, this also means greater plant production and more biodiesel,” says Olivia Odhiambo. “This is good news for owners of land that cannot currently be used for food plants due to heavy metal contamination. However, this technology could also have much wider implications in improving biofuel crop production nationally and internationally by simply helping farmers grow more fuel per hectare.”

The scientists have looked at two types of metal tolerant bacteria which colonise the leaves of the oil seed rape plants and one metal tolerant type that lives in the roots of other brassicas and found that all three were successful in promoting the plant growth, although they did show different tolerances to different heavy metals. The Carlow team now hopes to extend their study to include other commercial biofuel plants and different strains of metal resistant bacteria.

Media Contact

Lucy Goodchild alfa

More Information:

http://www.sgm.ac.uk

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors