Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Offshore wind power and wave energy devices create artificial reefs

Offshore wind power and wave energy foundations can increase local abundances of fish and crabs. The reef-like constructions also favor for example blue mussels and barnacles.

What's more, it is possible to increase or decrease the abundance of various species by altering the structural design of foundation. This was shown by Dan Wilhelmsson of the Department of Zoology, Stockholm University, in a recently published dissertation.

"Hard surfaces are often hard currency in the ocean, and these foundations can function as artificial reefs. Rock boulders are often placed around the structures to prevent erosion (scouring) around these, and this strengthens the reef function," says Dan Wilhelmsson.

A major expansion of offshore wind power is underway along European coasts, and the interest is growing in countries such as the US, China, Japan, and India. Moreover, wave power technologies are being developed very rapidly. Many thousand wind and wave power plants grouped in large arrays that each cover several square kilometers can be expected. How marine life will react to this is not clear, but several research projects investigating the impacts of noise, shadows, electromagnetic fields, and changes in hydrology etc. are underway.

Dan Wilhelmsson studied how offshore wind turbines constitute habitats for fish, crabs, lobsters, fouling animals, and plants. He shows that wind turbines, even without scour protection, function as artificial reefs for bottom dwelling fish. The seabed in the vicinity of wind turbines had higher densities of fish compared to further away from the turbines and in reference areas. This was despite that the natural bottoms were rich in boulders and algae. Blue mussels dominated on the wind turbines that appeared to offer good growth conditions.

Wave power foundations, too, constituting massive concrete blocks, proved to attract fish and large crabs. Blue mussels fall down from the surface buoys and become food for animals on the foundations and on the adjacent seabed. Lobsters also settle under the foundations In a large-scale experiment, holes were drilled in the foundations, and this dramatically increased numbers of crabs. The position of the holes also proved to be of importance for the crabs.

However, aggregations of certain species may have a negative impact on other species. The number of predatory animals on artificial reefs can sometimes become so large that the organisms they prey on, such as sea-pens, starfish, and crustaceans, are decimated in the surroundings, and certain species can disappear entirely.

"With wind and wave energy farms, it should be possible to create large areas with biologically productive reef structures, which would moreover be protected from bottom trawling. By carefully designing the foundations it would be possible to favor and protect important species, or, conversely, to reduce the reef effects in order minimize the impact on an area," says Dan Wilhelmsson.

Title of dissertation
Aspects of offshore renewable energy and the alterations of marine habitats
For further information
Dan Wilhelmsson, Department of Zoology, mobile: +46 (0)702-53 53 65 e-mail:, phone: +46 (0)8-16 40 90,

Jonas Åblad | idw
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>