Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Offshore wind power and wave energy devices create artificial reefs

18.01.2010
Offshore wind power and wave energy foundations can increase local abundances of fish and crabs. The reef-like constructions also favor for example blue mussels and barnacles.

What's more, it is possible to increase or decrease the abundance of various species by altering the structural design of foundation. This was shown by Dan Wilhelmsson of the Department of Zoology, Stockholm University, in a recently published dissertation.

"Hard surfaces are often hard currency in the ocean, and these foundations can function as artificial reefs. Rock boulders are often placed around the structures to prevent erosion (scouring) around these, and this strengthens the reef function," says Dan Wilhelmsson.

A major expansion of offshore wind power is underway along European coasts, and the interest is growing in countries such as the US, China, Japan, and India. Moreover, wave power technologies are being developed very rapidly. Many thousand wind and wave power plants grouped in large arrays that each cover several square kilometers can be expected. How marine life will react to this is not clear, but several research projects investigating the impacts of noise, shadows, electromagnetic fields, and changes in hydrology etc. are underway.

Dan Wilhelmsson studied how offshore wind turbines constitute habitats for fish, crabs, lobsters, fouling animals, and plants. He shows that wind turbines, even without scour protection, function as artificial reefs for bottom dwelling fish. The seabed in the vicinity of wind turbines had higher densities of fish compared to further away from the turbines and in reference areas. This was despite that the natural bottoms were rich in boulders and algae. Blue mussels dominated on the wind turbines that appeared to offer good growth conditions.

Wave power foundations, too, constituting massive concrete blocks, proved to attract fish and large crabs. Blue mussels fall down from the surface buoys and become food for animals on the foundations and on the adjacent seabed. Lobsters also settle under the foundations In a large-scale experiment, holes were drilled in the foundations, and this dramatically increased numbers of crabs. The position of the holes also proved to be of importance for the crabs.

However, aggregations of certain species may have a negative impact on other species. The number of predatory animals on artificial reefs can sometimes become so large that the organisms they prey on, such as sea-pens, starfish, and crustaceans, are decimated in the surroundings, and certain species can disappear entirely.

"With wind and wave energy farms, it should be possible to create large areas with biologically productive reef structures, which would moreover be protected from bottom trawling. By carefully designing the foundations it would be possible to favor and protect important species, or, conversely, to reduce the reef effects in order minimize the impact on an area," says Dan Wilhelmsson.

Title of dissertation
Aspects of offshore renewable energy and the alterations of marine habitats
For further information
Dan Wilhelmsson, Department of Zoology, mobile: +46 (0)702-53 53 65 e-mail:
dan.wilhelmsson@zoologi.su.se, phone: +46 (0)8-16 40 90, press@su.se

Jonas Åblad | idw
Further information:
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>