Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less O2 Triggers Grasshopper Molting, Farmers Could Benefit

14.05.2013
Less oxygen = shorter time between molts = shorter life-span = fewer hungry grasshoppers. And for farmers, that’s very good news. A recent study conducted by Scott Kirkton, associate professor of biology at Union College, offers insight into the relationship between respiratory function and molting that could help farmers save more of their crops.

“These grasshoppers, Schistocerca americana, emerge as 10-milligram juveniles and become 2.5-gram adults in about six weeks,” Kirkton said. “That’s a 250-fold weight increase - the equivalent of an 8-pound baby being 2,000 pounds after six weeks.”

With each molt, grasshoppers shed their exoskeletons and emerge into new ones that provide room for growth. During the six stages of their lifecycle, they get progressively larger.

Using an x-ray video or synchrotron at Argonne National Laboratory’s Advanced Photon Source in Chicago, Kirkton and his collaborator, Kendra Greenlee, assistant professor of biology at North Dakota State University, visualized living grasshoppers at different stages within an instar – the time between molts. They found that grasshoppers’ insides are essentially too big for their outsides near the end of each stage, and organs for breathing (air sacs and tracheae) were compressed.

“We found that late-stage grasshoppers have trouble breathing and oxygen delivery is reduced, such that molting might occur sooner than expected to increase exoskeleton size and alleviate respiratory system compression,” said Kirkton.

And if oxygen availability does trigger molting, farmers could benefit.

“If crops were stored at lower oxygen levels, we might be able to reduce the effect of pests,” said Kirkton. “Less oxygen would decrease body size by forcing pests to complete life-stages faster, giving them less time to reach maximum adult size. Also, low oxygen may reduce metabolism, and therefore, insect appetite.”

The research was funded by the National Science Foundation and the U.S. Department of Energy.

Future work will examine how oxygen delivery varies with development in other crop pests, such as the tobacco hornworm caterpillar, Manduca sexta.

Phil WajdaPhone | Newswise
Further information:
http://www.union.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>