Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA scientists find mosquito control pesticide low risk to juvenile oysters, hard clams

10.06.2014

Climate stressors, however, increase risk to shellfish

Four of the most common mosquito pesticides used along the east and Gulf coasts show little risk to juvenile hard clams and oysters, according to a NOAA study.


The study showed low risk of impacts from four common mosquito pesticides on juvenile hard clams -- but that risk increased with climate stressors such as hypoxia.

Credit: NOAA

However, the study, published in the on-line journal Archives of Environmental Contamination and Toxicology, also determined that lower oxygen levels in the water, known as hypoxia, and increased acidification actually increased how toxic some of the pesticides were. Such climate variables should be considered when using these pesticides in the coastal zone, the study concluded.

"What we found is that larval oysters and hard clams can withstand low levels of pesticide use, but they are more sensitive to pesticides if their ecosystem is suffering from local climate stressors like hypoxia and acidification," said the study's lead author, Marie DeLorenzo, Ph.D., NOAA environmental physiology and microbiology program lead with NOAA's Centers for Coastal Ocean Science. "Hopefully these data will benefit both shellfish mariculture operations and environmental resource agencies as they manage the use of mosquito control pesticides near their coastal ecosystems."

Commercial shellfishing has a large economic national impact. NOAA Fisheries estimated that U.S. oyster and hard clam landings for 2010 were worth nearly $118 million and $41 million, respectively. Shellfish growers, however, are concerned that pesticide spraying near the coastlines may contaminate both their hatcheries and source waters. This is compounded by a lack of data on the toxicity of mosquito insecticides for these shellfish.

These ecologically and economically important species inhabit tidal marsh habitats along the U.S. Atlantic and Gulf of Mexico coastlines. Clams and oysters are also important for the coastal ecosystem because they filter water, improving water quality, and serve as habitat and food sources for other estuarine species.

Approximately 200 mosquito species live in the United States. In addition to causing painful itchy bumps to people, mosquito bites can transmit serious diseases such as malaria, dengue fever, and West Nile virus. One approach to controlling mosquitoes is to apply pesticides by spraying from planes or trucks over a large area. However, to effectively control mosquitoes, the pesticides must target species which live in aquatic habitats that are also home to sensitive estuarine species. This may pose a risk to coastal environments. Also, since many residential communities where the pesticides may be used are near these coastal aquatic habitats, the potential for direct overspray or unintentional drift into these waters is increased.

The study sought to address a lack of toxicity data for mosquito control pesticide effects on shellfish early life stages. The research team examined the toxicity of four mosquito control pesticides (naled, resmethrin, permethrin, and methoprene) to larval and juvenile life stages of hard clams (Mercenaria mercenaria) and Eastern oysters (Crassostrea virginica).

Lethal thresholds were determined for the four pesticides, and differences in sensitivity were found between chemicals, species, and life stages tested. Overall, clams were more susceptible to mosquito control pesticides than oysters. Naled, an organophosphate chemical, was the most toxic compound in oyster larvae, while resmethrin was the most toxic compound in clam larvae. Decreased swimming activity was observed after four days in larval oysters and decreased growth was found in juvenile clams and oysters after 21 days.

Using a hazard assessment, which compared the toxicity thresholds to concentrations expected in the environment, the researchers calculated a low-level of risk to clams and oysters from application of these pesticides for mosquito control.

The researchers also tested the pesticides' toxicity under climate stress conditions. The more extreme climate conditions caused increased pesticide toxicity.

The study did not address the impacts of the pesticides on other shellfish such as shrimp or lobsters.

###

NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter, Instagram and our other social media channels.

Ben Sherman | Eurek Alert!

Further reports about: NOAA larvae mosquito oysters pesticide pesticides shellfish species toxic toxicity

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>