Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous Oxide Emissions Respond Differently to No-Till Depending on the Soil Type

24.10.2008
Authors report that within the first 5 yr of adopting a no-tillage practice in a heavy clay soil, nitrous oxide emissions could offset the soil carbon dioxide sink.

The practice of no-till has increased considerably during the past 20 yr. The absence of tillage coupled with the accumulation of crop residues at the soil surface modifies several soil properties but also influence nitrogen dynamics.

Soils under no-till usually host a more abundant and diverse biota and are less prone to erosion, water loss, and structural breakdown than tilled soils. Their organic matter content is also often increased. In addition, no-till is proposed as a measure to mitigate the increase in atmospheric carbon dioxide concentration. To assess the net effect of no-till on greenhouse gas emissions, other gases also have to be examined.

Researchers at Agriculture and Agri-Food Canada (Québec City) investigated the short-term impacts of no-till on soil nitrous oxide emissions. They compared emissions of nitrous oxide as well as nitrogen contents and physical properties between moldboard plowed (early fall) and no-till soils near Québec City, Canada. Measurements were made during three growing seasons in a poorly drained clay and a well-drained loamy soil cropped to barley. The results of the study were reported in the 2008 September-October issue of the Soil Science Society of America Journal.

The authors concluded that their investigation indicates “that no-till can result in incremental nitrous oxide emissions that can more than offset the soil carbon dioxide sink during the first 5 yr after adoption of this soil conservation practice in a heavy clay soil…. Consequently, the potential of no-till for decreasing net greenhouse gas emissions may be limited in fine-textured soils that are prone to high water content and reduced aeration”.

Differences in the response of nitrous oxide emissions when converting to a no-till practice between the clay and loam soils were striking. While emissions were similar in both tillage treatments in the well-aerated loam, they more than doubled under no-till in the clay soil. Differences in emissions between tillage practices in the clay soil were observed in spring and summer but were greater and more consistent in the fall after plowing operations. The influence of plowing on nitrous oxide flux in the heavy clay soil was likely the result of increased soil porosity that maintained soil aeration and water content at levels restricting denitrification and nitrous oxide production. Accordingly, denitrification rates are usually increased in denser and wetter no-till soils and the anticipated benefits of the adoption of soil conservation practices on net soil-surface greenhouse gas emissions could be offset by increases in nitrous oxide emissions.

Predicting the impacts of no-till on nitrous oxide emissions is required for a full assessment of the influence of this practice on net greenhouse gas emissions. Researchers at Agriculture and Agri-Food Canada are pursuing their investigations to understand the factors that control the mechanisms leading to nitrous oxide emissions under contrasting soil tillage practices. Specifically, they now focus their efforts on the role of soil aeration with the hypothesis that the “adoption of no-till only increases nitrous oxide emissions in poorly aerated soils”. Field studies and mathematical modeling of the impact of no-till on soil nitrous oxide emission has yielded contrasting results and an explanation of the high intersite variability of the influence of no-till on soil nitrous oxide emissions is still lacking.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/72/5/1363.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>