Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nitrogen-tracking tools for better crops and less pollution

As every gardner knows, nitrogen is crucial for a plant's growth. But nitrogen absorption is inefficient.

This means that on the scale of food crops, adding significant levels of nitrogen to the soil through fertilizer presents a number of problems, particularly river and groundwater pollution.

The NiTrac sensor developed by Cheng Hsun Ho and Wolf Frommer of the Carnegie Institution for Science will enable non-invasive real-time monitoring of nitrogen acquisition in action in plant roots, providing a new tool set that can be used to improve nitrogen efficiency. The novel sensor technology is widely applicable and useful also for cancer and neurobiology.

Credit: Cheng Hsun Ho and Wolf Frommer

As a result, finding a way to improve nitrogen uptake in agricultural products could improve yields and decrease risks to environmental and human health. Nitrogen is primarily taken up from the soil by the roots and assimilated by the plant to become part of DNA, proteins, and many other compounds.

Uptake is controlled by a number of factors, including availability, demand, and the plant's energy status. But there is much about the transport proteins involved in the process that isn't understood. New work from Carnegie's Cheng-Hsun Ho and Wolf Frommer developed tools that could help scientists observe the nitrogen-uptake process in real time and could lead to developments that improve agriculture and the environment. It will be published by eLife on March 11 and is already available online.

Frommer had previously developed technology to spy on transport protein activity by using fluorescent tags in a cell's DNA to monitor the structural rearrangements that a transporter undergoes as it moves its target molecule. They tailored this technology to five nitrogen transport targets to monitor the nitrogen uptake and assimilation process.

"We engineered these sensors to monitor the activity and regulation of suspected nitrogen transporters in living plant roots, which otherwise are impossible to study," Frommer said. "This suite of tools will vastly improve our understanding of the nitrogen-uptake process and will help to develop increased crop yields and decrease fertilizer-caused pollution."

Their method is applicable to any transporter from any organism, thereby enabling the otherwise exceptionally difficult analysis of transport processes in the tissues of plants and animals.

This work was funded by the NSF

Wolf Frommer | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Harnessing a peptide holds promise for increasing crop yields without more fertilizer
25.11.2015 | University of Massachusetts at Amherst

nachricht Study shows how crop prices and climate variables affect yield and acreage
18.11.2015 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>