Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nitrogen source determined significant for inflorescence development in Phalaenopsis


Research shows importance of ample nitrogen fertilization at all growth stages

The Phalaenopsis orchid, also known as the moth orchid, is the most important pot flower in terms of market value in the world's major floriculture markets. Because nitrogen significantly affects the growth and flowering of Phalaenopsis, nitrogen needs during flowering are of particular interest to growers.

This is Sogo Yukidian 'V3' photographed at a nursery in Taiwan. The variety was used in a study of nitrogen significance in production of the popular moth orchid.

Credit: Photo by Yao-Chien Alex Chang

Researchers Hadi Susilo, Ying-Chun Peng, and Yao-Chien Alex Chang from the Department of Horticulture and Landscape Architecture at National Taiwan University published a study in the Journal of the American Society for Horticultural Science that determined the importance of providing Phalaenopsis with ample nitrogen fertilization at the its various growth stages.

"To our knowledge, the relative contributions of stored nitrogen (N) and recently absorbed fertilizer N to the developing inflorescence had not been studied in Phalaenopsis," the authors said. "The relative contributions to the stored N pool of N accumulated during the different growth stages during the long vegetative period of Phalaenopsis cultivation were also unknown. The objective of our study was to bring answers to these unknowns."

The team used N-labeling--a powerful research tool for accurately determining the fate of nitrogen in the environment--to compare the contributions of fertilizer N, applied before or after spiking, to the developing inflorescence, and compared the relative contributions of fertilizer N absorbed during various stages of the vegetative period to the stored N pool.

"The nutritional study of Phalaenopsis is difficult with traditional methods because it has a strong buffering capacity against nutrient deficiency, but we used 15N-labeling with the enrichment method to accurately trace the absorption and partitioning of fertilizer N in Phalaenopsis," the scientists said.

The results of multiple experiments showed that inflorescence is a major N sink during the reproductive stage of Phalaenopsis. "Fertilizer applied during the reproductive stage is a significant N source for the inflorescence development of Phalaenopsis, whereby current fertilizer application supplies 57% of the N required for inflorescence development. Therefore, providing sufficient fertilizer N is important during the reproductive stage to ensure the quality of flowering," the authors said.

Further experiments showed that, even when ample fertilization was provided during the reproductive stage, 6-8% of the nitrogen accumulated during growing Stage I (small plant in 4.5-cm pot for 5 months), Stage II (medium plant in 8.5-cm pot for 5 months), and Stage III (large plant in 10.5-cm pot for 5 months) ended up in the inflorescence at the visible bud stage.

At the "two-third flowers open" stage, 12-16% of the N accumulated in the plant during these three stages ended up in the inflorescence. The scientists concluded that these results indicated the importance of providing Phalaenopsis with ample N fertilization at all growth stages.


The complete study and abstract are available on the ASHS J. Amer. Soc. Hort. Sci. electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

Michael W. Neff | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Harnessing a peptide holds promise for increasing crop yields without more fertilizer
25.11.2015 | University of Massachusetts at Amherst

nachricht Study shows how crop prices and climate variables affect yield and acreage
18.11.2015 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>