Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nitrogen source determined significant for inflorescence development in Phalaenopsis


Research shows importance of ample nitrogen fertilization at all growth stages

The Phalaenopsis orchid, also known as the moth orchid, is the most important pot flower in terms of market value in the world's major floriculture markets. Because nitrogen significantly affects the growth and flowering of Phalaenopsis, nitrogen needs during flowering are of particular interest to growers.

This is Sogo Yukidian 'V3' photographed at a nursery in Taiwan. The variety was used in a study of nitrogen significance in production of the popular moth orchid.

Credit: Photo by Yao-Chien Alex Chang

Researchers Hadi Susilo, Ying-Chun Peng, and Yao-Chien Alex Chang from the Department of Horticulture and Landscape Architecture at National Taiwan University published a study in the Journal of the American Society for Horticultural Science that determined the importance of providing Phalaenopsis with ample nitrogen fertilization at the its various growth stages.

"To our knowledge, the relative contributions of stored nitrogen (N) and recently absorbed fertilizer N to the developing inflorescence had not been studied in Phalaenopsis," the authors said. "The relative contributions to the stored N pool of N accumulated during the different growth stages during the long vegetative period of Phalaenopsis cultivation were also unknown. The objective of our study was to bring answers to these unknowns."

The team used N-labeling--a powerful research tool for accurately determining the fate of nitrogen in the environment--to compare the contributions of fertilizer N, applied before or after spiking, to the developing inflorescence, and compared the relative contributions of fertilizer N absorbed during various stages of the vegetative period to the stored N pool.

"The nutritional study of Phalaenopsis is difficult with traditional methods because it has a strong buffering capacity against nutrient deficiency, but we used 15N-labeling with the enrichment method to accurately trace the absorption and partitioning of fertilizer N in Phalaenopsis," the scientists said.

The results of multiple experiments showed that inflorescence is a major N sink during the reproductive stage of Phalaenopsis. "Fertilizer applied during the reproductive stage is a significant N source for the inflorescence development of Phalaenopsis, whereby current fertilizer application supplies 57% of the N required for inflorescence development. Therefore, providing sufficient fertilizer N is important during the reproductive stage to ensure the quality of flowering," the authors said.

Further experiments showed that, even when ample fertilization was provided during the reproductive stage, 6-8% of the nitrogen accumulated during growing Stage I (small plant in 4.5-cm pot for 5 months), Stage II (medium plant in 8.5-cm pot for 5 months), and Stage III (large plant in 10.5-cm pot for 5 months) ended up in the inflorescence at the visible bud stage.

At the "two-third flowers open" stage, 12-16% of the N accumulated in the plant during these three stages ended up in the inflorescence. The scientists concluded that these results indicated the importance of providing Phalaenopsis with ample N fertilization at all growth stages.


The complete study and abstract are available on the ASHS J. Amer. Soc. Hort. Sci. electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

Michael W. Neff | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>