Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Fertilizers' Impact on Lawn Soils

08.11.2011
Nitrogen fertilizers from farm fields often end up in aquatic ecosystems, resulting in water quality problems, such as toxic algae and underwater ‘dead zones’.

There are concerns that fertilizers used on lawns may also contribute to these problems. All of the lawns in the United States cover an area almost as large as Florida, making turfgrass our largest ‘crop’ and lawn fertilizer use a legitimate issue.

In a study funded by the National Science Foundation Ecosystem Studies and Long Term Ecological Research programs, researchers from Cornell University and the Cary Institute of Ecosystem Studies have utilized recent technological advances to measure gaseous nitrogen emissions in home lawns.

In the past, scientists have conducted nitrogen input-output studies on lawns to determine how much nitrogen is taken up by vegetation or deposited in soils, and how much is lost. These studies have rarely provided any accurate data, and the ‘missing’ nitrogen has usually been attributed to denitrification, a process that removes nitrogen from soils by converting nitrate into nitrogen gas.

High soil moisture, low soil oxygen, and sufficient nitrogen availability are all factors that lead to denitrification, which occurs mostly in small areas during brief time periods. This makes it hard to pinpoint peak activity, and measure the process outside of the lab. Additionally, because there is so much nitrogen gas in our atmosphere, it has been difficult for researchers to detect the nitrogen gas produced by denitrification.

In this study, researchers overcame these challenges to measure rates of denitrification from residential lawns in Baltimore, MD. They found that denitrification is an important pathway for removing excess nitrogen from lawns. Nitrogen removals by denitrification were equivalent to 15% of annual fertilizer inputs to the study lawns. The majority of this nitrogen removal occurred over a small time period when soil conditions were favorable to high rates of denitrification. While small amounts of nitrogen were transported to groundwater and streams, the majority of fertilizer nitrogen inputs were retained in lawn soils.

The results from this study are encouraging, but much more work needs to be done to apply the results to a wider range of soil, climatic, and lawn management conditions. While most of the nitrogen losses from denitrification were in the form of nitrogen gas, the results suggest the possibility of significant losses as nitrous oxide, a greenhouse gas more potent than carbon dioxide. Continuing excessive fertilizer applications will likely saturate soil storage capacity, resulting in the harmful transfer of nitrogen to surface and ground water.

The complete results from this study can be found in the November/December issue of Journal of Environmental Quality.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/jeq/abstracts/40/6/1932

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

James Giese | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>