Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen emissions in dairy pastures peak in the springtime

11.12.2008
The nitrogen emissions from boreal dairy pastures vary depending on the time of year and ley rotation. The emissions peak in spring, when the nitrates accumulated in the soil over the previous summer and winter leach with the melting snow.

Research Scientist Kirsi H. Saarijärvi of MTT Agrifood Research Finland charted the nitrogen emissions caused by intensive grazing in her doctoral dissertation. The topic has not been previously investigated to this extent in boreal conditions.

The experiments were conducted in a 0.7-hectare lysimeter field at MTT Agrifood Research in Maaninka, Finland. A total of 12 basins are placed underneath the field surface, and analyses of the leachates in these basins reveal the nutrient cycle in the pasture. A comparable pasture-size lysimeter field is not known to exist anywhere else in Europe.

The research also involved measuring the ammonia evaporated from the dung and urine of cows by using a chamber process.

LEACHING IS THE KEY ROUTE OF NITROGEN LOSSES

Saarijärvi found that much more nitrogen is left behind on a pasture than in silage cutting fields, since the nitrogen outputs from the pasture are much lower than from silage cutting fields. Most of the nitrogen leaving the pasture is absorbed in the milk produced by the cows grazing in the pasture.

From an ecological perspective, the nitrogen leaching from the soil is the most significant load from dairy pastures.

“The second largest hazard to the environment arises from the ammonia (NH3) evaporating from cow dung and urine, but its volumes have been previously overestimated. The significance of nitrogen loss in surface runoff is low in the conditions prevailing in Finland,” Saarijärvi says.

Nitrous oxide is also emitted into the air from the entire field area, but its emissions are also lower than previously assumed.

NITROGEN PULSE HIGHEST AFTER PASTURE RENEWAL

Saarijärvi stresses that measurements must be carried out throughout the four-year ley rotation in order to gain a representative view of the nitrogen emissions. The nitrogen pulse is especially strong in springtime following pasture renewal.

“The nitrogen accumulated in the ploughed layer is released after pasture renewal. Emissions are smaller in the first years of the rotation, as the grassroots and soil microbes actively bind nitrogen,” Saarijärvi explains.

She found that the springtime nitrogen load is increased since the microbial activity in the soil is not entirely shut down for the winter but merely slows down. Therefore, nitrous oxide resulting from microbial processes in winter is emitted in large quantities as the soil thaws during the spring.

The nitrogen load is greatest in the areas where cattle spend most of the time in the pasture. The watering facility area functions as a congregation area, and it suffers treading damage that destroys the vegetation and soil pore structure, adding to local nitrogen losses.

MANY WAYS TO REDUCE EMISSIONS

The nitrogen emissions from dairy pastures can be reduced by several fairly simple techniques. Saarijärvi notes that emissions can be cut by reducing fertilisation, for example. A white clover mixture, which binds nitrogen directly from the air, can replace fertilisation in good soil conditions.

“The use of protein supplementation for cows should be reduced and the grazing season can be shortened slightly in the autumn. The hot spots of nitrogen cycling can be relieved by moving the watering facility area before the soil around it becomes damaged,” Saarijärvi suggests.

Where possible, it is best to sow the grass in the spring and to use a catch crop that effectively binds the nutrients.

The dissertation of Kirsi H. Saarijärvi, M.Sc. (Agriculture and Forestry), ‘Nitrogen cycling on intensively managed boreal dairy pastures’, will be publicly reviewed at the University of Kuopio on 19 December 2008. Professor Juha Helenius of the University of Helsinki will serve as the Opponent and Docent Helvi Heinonen-Tanski of the University of Kuopio will serve as the Custos.

For more information, please contact:
Kirsi Saarijärvi, Research Scientist, MTT Agrifood Research Finland, tel. +358 17 2644 822, kirsi.saarijarvi@mtt.fi

Ulla Jauhiainen | alfa
Further information:
http://www.mtt.fi
http://portal.mtt.fi/portal/page/portal/www_en/News/Press%20releases

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>