Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about the deformed wing virus, a major factor in honey bee colony mortality

11.11.2016

In recent years, massive losses of honey bee colonies have occurred during winter in Europe and North America. It could be shown that the Varroa mite and the deformed wing virus are the main factors responsible for the alarming bee mortality. Researchers from the Vetmeduni Vienna have succeeded for the first time in simulating the course of disease using artificial genetic material of the virus. The symptoms of the so-called mite disease were reproduced in the laboratory without mites by the injection of synthetic RNA. This enabled the prudent development of new strategies in order to protect the bee population in the future. The results were published in the journal PLOS ONE.

The honey bee Apis mellifera plays an important role for the pollination of fruit and vegetable plants, besides its significance for the production of honey and wax. Losses of entire bee colonies during winter have economic and – in particular – ecological consequences as pollinators are missing in spring during blossom. Apiculture in North America and Europe is especially affected by partly massive losses. Only during the winter months of 2014/2015, up to fifty per cent of all bee colonies in some Austrian regions collapsed.


The Varroa mite and the deformed wing virus are main factors responsible for alarming bee mortality.

Benjamin Lamp/Vetmeduni Vienna


Apiculture in North America and Europe is especially affected by partly massive losses.

Benjamin Lamp/Vetmeduni Vienna

The main trigger of this bee mortality does not seem to be the use of pesticides in modern agriculture. Many studies have shown that the survival of bee colonies strongly depends on the infestation with Varroa mites, widespread blood-sucking parasites, and the transmission of deformed wing virus by these mites.

A research group from the Institute of Virology at the University of Veterinary Medicine, Vienna has developed a new laboratory system, which enabled them to make an important step forward in the investigation of the virus. By using a molecular clone, they have simulated the course of disease in a targeted way under laboratory conditions.

Artificial viral genomes of deformed wing virus

Up to now, scientists have only used samples of the deformed wing virus, which they had taken from infected bees. “However, mixed and multiple infections can bias the results of such tests”, stated lead author Benjamin Lamp. For the new test system, the researchers used artificial genetic material instead of natural samples of the deformed wing virus, in order to clearly correlate the course of disease to the virus.

“Initially, we amplify the genetic RNA material of a virus and save it as a DNA copy in a vector, a specific transport vehicle for genetic material. The resulting molecular clone enables us to produce artificial viruses, which are identical and genetically defined,” explained Lamp. Insects infected with the artificial virus showed the same symptoms such as discolouration, dwarfism, death or the eponymous deformation of the wing that also occur in natural infections. Thus, it could be unambiguously shown that these symptoms are caused by the deformed wing virus.

Deformed wing virus detected in gland tissue

Besides the infection with the viral RNA under controlled laboratory conditions, also an unbiased picture of the disease process could be shown. The scientists infected not only fully developed bees with the artificial genetic material of the virus, but also larvae and pupae. During the pupal stage, Lamp and his team analysed the target tissues and the host cells – the cells the virus preferably infects.

The scientists found viral antigens – the specific protein molecules of the deformed wing virus – in all body areas. However, neural, gland and connective tissue cells were particularly affected.

“The high concentrations of viral proteins – the antigens – in the glands could also indicate an oral transmission of the virus from one bee to another in the hive,” explained Professor Till Rümenapf, last author and head of the Institute of Virology at the University of Veterinary Medicine, Vienna. This could explain why the virus also remains present in the hives if it is not transmitted by the Varroa mite. However, no viral proteins were detected in muscle and blood cells.

Various applications of the new method

By using the molecular clone, different aspects of the viral lifecycle could be simulated, manipulated and studied under laboratory conditions. This concerns the transmission of the virus by the Varroa mite, the course of the infection and the viral replication in different stages of development of honey bees. Controlled experimental conditions will enable the development of new strategies in order to effectively reduce the losses of bee colonies caused by the virus.

The described experiments involved only one DWV strain, but the method can also be used for other strains. “In many cases, a bee is not only infected with one virus species. Our test system provides a tool to find out, which viruses are especially harmful and how viruses behave in multiple infections,” explained Lamp. “Thus, we can develop targeted strategies against disease-causing viruses.”

About the deformed wing virus

The deformed wing virus (DWV) belongs to the family of Iflaviridae. These viruses are so-called RNA viruses. Their genetic material only consists of one ribonucleotide strand, unlike the prevailing double-stranded DNA in mammals. In most but not all cases, infections with the deformed wing virus are bound to an infestation of a hive with the Varroa mite. “The virus persists in the hives and can even be detected if there are no parasites in the hive,” explained Benjamin Lamp.

Service:
The article “Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV)“ by Benjamin Lamp, Angelika Url, Kerstin Seitz, Jürgen Eichhorn, Christiane Riedel, Leonie Janina Sinn, Stanislav Indik, Hemma Köglberger and Till Rümenapf was published in the journal PLOS ONE.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164639

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Benjamin Lamp
Institute of Virology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2709
benjamin.lamp@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>