Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neiker-Tecnalia develops new types of substrates using sewage sludge and metallurgical waste

21.03.2012
Neiker-Tecnalia, the Basque Institute for Agricultural Research and Development, has developed new types of artificial soils––Technosols to be used as growing substrates in the greenhouses.
Sludge from waste water treatment, ash from biomass combustion, metallurgical waste, and barley straw have been used . The new substrates were found to have some ideal properties for plant growth, e.g. high levels of nutrients (nitrogen, phosphorus and potassium), high acid buffering capacity, and organic matter stability. The research has been carried out by Dr. Fenxia Yao, who has recently presented it as part of the work for her PhD thesis, which constitutes the first PhD thesis in the field of Technosols in Spain .

In horticultural and forestry production systems, the production of container grown plants has undergone spectacular development in recent years owing to the advantage it offers over direct sowing or field crop cultivation. The total volume of crop growing media consumed in the EU is reckoned to be between 20 and 30 million m3 per year, with peat covering 85-90% of market needs. As peat is a valuable, non-renewable organic material, there is great interest in the quest for blends of waste products from urban and industrial processes that can be used to substitute peat, and which at the same time contribute to an effective use of resources.

Neiker-Tecnalia researchers, in collaboration with the University of Santiago de Compostela (Galicia, Spain), have developed new types of Technosols to be used as substrates in the greenhouse cultivation. They were formulated from mixture of sewage sludge, green foundry sand (sand used in the metal foundry industry to produce moulds into which the molten metal is poured), Linz-Donawitz slag (slag from steel refining), barley straw, and biomass combustion ash. Three different types of sludge were employed: anaerobic, aerobic, and lime-treated aerobic sludge. The proportions of each ingredient were: 5% of foundry sand, 10% of LD slag, 2% of barley straw, 23% or 33% of combustion ash, and 60% or 50% of sewage sludge.

The results show that the Technosols elaborated from anaerobic sludge contained a higher quantity of primary nutrients –nitrogen and phosphorus – as well as organic carbon, whereas the Technosols derived from aerobic sludge had the lowest level of organic carbon and macro nutrients. The Technosols formulated from aerobic sludge treated with lime had the lowest availability of phosphorus, due to precipitation of phosphates with calcio.

As regards plant yields, the results show that the highest yields are obtained in the Technosols made from mixtures in which anaerobic sludge was used as the organic component. This is consistent with the availability of the nutrients existing in these Technosols. Furthermore, the bioavailability of heavy metals has been efficiently decreased in the Technosols.

A channel for scientific research

The research was carried out by Dr. Fenxia Yao, who obtained her Bachelor's degree at the Shenyang Agricultural University (China), and her Master's and first Doctor's degree in the Graduate School of Chinese Academy of Sciences (China). Fenxia Yao has become the first person to submit a PhD thesis on Technosols in Spain .This thesis, supervised by Dr. Marta Camps and Dr. Felipe Macías, was defended at the University of Santiago de Compostela on 31 January. It opens up an important channel for the scientific study of Technosols and their applications.

Technosols make a considerable contribution to the environment. Apart from being used as growing substrates, they can be applied to rehabilitate areas degraded by activities to extract minerals, or by public works, etc. At the same time they serve to reuse both organic and mineral materials, which would otherwise end up in landfill sites.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>