Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neiker-Tecnalia develops new types of substrates using sewage sludge and metallurgical waste

21.03.2012
Neiker-Tecnalia, the Basque Institute for Agricultural Research and Development, has developed new types of artificial soils––Technosols to be used as growing substrates in the greenhouses.
Sludge from waste water treatment, ash from biomass combustion, metallurgical waste, and barley straw have been used . The new substrates were found to have some ideal properties for plant growth, e.g. high levels of nutrients (nitrogen, phosphorus and potassium), high acid buffering capacity, and organic matter stability. The research has been carried out by Dr. Fenxia Yao, who has recently presented it as part of the work for her PhD thesis, which constitutes the first PhD thesis in the field of Technosols in Spain .

In horticultural and forestry production systems, the production of container grown plants has undergone spectacular development in recent years owing to the advantage it offers over direct sowing or field crop cultivation. The total volume of crop growing media consumed in the EU is reckoned to be between 20 and 30 million m3 per year, with peat covering 85-90% of market needs. As peat is a valuable, non-renewable organic material, there is great interest in the quest for blends of waste products from urban and industrial processes that can be used to substitute peat, and which at the same time contribute to an effective use of resources.

Neiker-Tecnalia researchers, in collaboration with the University of Santiago de Compostela (Galicia, Spain), have developed new types of Technosols to be used as substrates in the greenhouse cultivation. They were formulated from mixture of sewage sludge, green foundry sand (sand used in the metal foundry industry to produce moulds into which the molten metal is poured), Linz-Donawitz slag (slag from steel refining), barley straw, and biomass combustion ash. Three different types of sludge were employed: anaerobic, aerobic, and lime-treated aerobic sludge. The proportions of each ingredient were: 5% of foundry sand, 10% of LD slag, 2% of barley straw, 23% or 33% of combustion ash, and 60% or 50% of sewage sludge.

The results show that the Technosols elaborated from anaerobic sludge contained a higher quantity of primary nutrients –nitrogen and phosphorus – as well as organic carbon, whereas the Technosols derived from aerobic sludge had the lowest level of organic carbon and macro nutrients. The Technosols formulated from aerobic sludge treated with lime had the lowest availability of phosphorus, due to precipitation of phosphates with calcio.

As regards plant yields, the results show that the highest yields are obtained in the Technosols made from mixtures in which anaerobic sludge was used as the organic component. This is consistent with the availability of the nutrients existing in these Technosols. Furthermore, the bioavailability of heavy metals has been efficiently decreased in the Technosols.

A channel for scientific research

The research was carried out by Dr. Fenxia Yao, who obtained her Bachelor's degree at the Shenyang Agricultural University (China), and her Master's and first Doctor's degree in the Graduate School of Chinese Academy of Sciences (China). Fenxia Yao has become the first person to submit a PhD thesis on Technosols in Spain .This thesis, supervised by Dr. Marta Camps and Dr. Felipe Macías, was defended at the University of Santiago de Compostela on 31 January. It opens up an important channel for the scientific study of Technosols and their applications.

Technosols make a considerable contribution to the environment. Apart from being used as growing substrates, they can be applied to rehabilitate areas degraded by activities to extract minerals, or by public works, etc. At the same time they serve to reuse both organic and mineral materials, which would otherwise end up in landfill sites.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>