Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neiker-Tecnalia develops new types of substrates using sewage sludge and metallurgical waste

21.03.2012
Neiker-Tecnalia, the Basque Institute for Agricultural Research and Development, has developed new types of artificial soils––Technosols to be used as growing substrates in the greenhouses.
Sludge from waste water treatment, ash from biomass combustion, metallurgical waste, and barley straw have been used . The new substrates were found to have some ideal properties for plant growth, e.g. high levels of nutrients (nitrogen, phosphorus and potassium), high acid buffering capacity, and organic matter stability. The research has been carried out by Dr. Fenxia Yao, who has recently presented it as part of the work for her PhD thesis, which constitutes the first PhD thesis in the field of Technosols in Spain .

In horticultural and forestry production systems, the production of container grown plants has undergone spectacular development in recent years owing to the advantage it offers over direct sowing or field crop cultivation. The total volume of crop growing media consumed in the EU is reckoned to be between 20 and 30 million m3 per year, with peat covering 85-90% of market needs. As peat is a valuable, non-renewable organic material, there is great interest in the quest for blends of waste products from urban and industrial processes that can be used to substitute peat, and which at the same time contribute to an effective use of resources.

Neiker-Tecnalia researchers, in collaboration with the University of Santiago de Compostela (Galicia, Spain), have developed new types of Technosols to be used as substrates in the greenhouse cultivation. They were formulated from mixture of sewage sludge, green foundry sand (sand used in the metal foundry industry to produce moulds into which the molten metal is poured), Linz-Donawitz slag (slag from steel refining), barley straw, and biomass combustion ash. Three different types of sludge were employed: anaerobic, aerobic, and lime-treated aerobic sludge. The proportions of each ingredient were: 5% of foundry sand, 10% of LD slag, 2% of barley straw, 23% or 33% of combustion ash, and 60% or 50% of sewage sludge.

The results show that the Technosols elaborated from anaerobic sludge contained a higher quantity of primary nutrients –nitrogen and phosphorus – as well as organic carbon, whereas the Technosols derived from aerobic sludge had the lowest level of organic carbon and macro nutrients. The Technosols formulated from aerobic sludge treated with lime had the lowest availability of phosphorus, due to precipitation of phosphates with calcio.

As regards plant yields, the results show that the highest yields are obtained in the Technosols made from mixtures in which anaerobic sludge was used as the organic component. This is consistent with the availability of the nutrients existing in these Technosols. Furthermore, the bioavailability of heavy metals has been efficiently decreased in the Technosols.

A channel for scientific research

The research was carried out by Dr. Fenxia Yao, who obtained her Bachelor's degree at the Shenyang Agricultural University (China), and her Master's and first Doctor's degree in the Graduate School of Chinese Academy of Sciences (China). Fenxia Yao has become the first person to submit a PhD thesis on Technosols in Spain .This thesis, supervised by Dr. Marta Camps and Dr. Felipe Macías, was defended at the University of Santiago de Compostela on 31 January. It opens up an important channel for the scientific study of Technosols and their applications.

Technosols make a considerable contribution to the environment. Apart from being used as growing substrates, they can be applied to rehabilitate areas degraded by activities to extract minerals, or by public works, etc. At the same time they serve to reuse both organic and mineral materials, which would otherwise end up in landfill sites.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>