NDSU Prof Develops 3-D Model for How Plants Drink

Mario Biondini, professor in the School of Natural Resource Sciences at North Dakota State University (NDSU), Fargo, has developed a three-dimensional model that helps determine how much water plant root systems will absorb. Biondini has been invited to discuss his research at the semi-annual meeting of The Council of Scientific Society Presidents Dec. 6 to 9, 2008, in Washington, D.C.

In a global economy where scarcity of water can impact agricultural yields of crops to feed the world, Professor Biondini’s research offers additional insights on more accurately predicting how much water plants absorb through their root systems. Biondini’s research improves upon what is known as the West, Brown, and Enquist (WBE) model for scaling laws in biological networks. The WBE model predicts how closed systems will uptake water. Although it is useful to evaluate closed systems, the WBE model does not offer an optimum way to predict water uptake in open systems such as plant root systems.

In his research, Biondini used data from 1,759 plants in 77 herbaceous plant species to test his model. Such modeling includes taking into account the resistance to water flow inside the root system (longitudinal flow), as well as the water coming into the root system (transversal flow). As the model was developed, Biondini included soil type and drainage patterns. The Biondini model uses a simple root system while still illustrating the flow dynamics of a complete root network.

An accurate model such as the one developed by Biondini provides an important tool for consideration in sustainable agricultural practices. The 3-D model simulates interactions among plants and soil systems. The model 3DMIPS is used to investigate links between biological diversity, nutrient cycling, nutrient retention, water quality, productivity, stability and sustainability of natural and managed ecosystems.

Biondini used NDSU’s Center for High Performance Computing (CHPC) in the development of his model. “CHPC resources have been invaluable since implementations of the model required large memory and disc storage as well as high execution speeds for both its three-dimensional nature and the fine spatial grain needed to model water and nutrient flows at the root surface level,” Biondini said.

Funding for Biondini’s research was provided by the United States Department of Agriculture’s Cooperative State Research, Education, and Extension Service (CSREES) National Research Initiative (NRI).

Biondini received his bachelor’s degree in agronomy from the Universidad Nacional del Sur, Bahia Blanca, Argentina; his master’s degree in range ecology-systems analysis from Texas Tech University, Lubbock, Texas; and his Ph.D. in range ecosystems science-statistics from Colorado State University, Fort Collins, Colo. He joined NDSU in 1986. Biondini has been recipient of the NDSU College of Agriculture Award for Excellence in Research – Early Career, the NDSU College of Agriculture, Food Systems and Natural Resources Eugene R. Dahl Excellence in Research Award – Senior Career, and the NDSU Fred Waldron Award for Outstanding Research.

About NDSU
With a reputation for excellence in teaching and multidisciplinary research, North Dakota State University, Fargo, links academics to real world opportunities. As a metropolitan land grant institution with more than 13,000 students, NDSU is listed in the top 100 of several National Science Foundation annual research expenditure rankings in the areas of chemistry, physical sciences, agricultural sciences and social sciences. Out of 537 research universities without a medical school, NDSU ranks 41st in research expenditures for FY2007. www.ndsu.edu/research
About CSSP
The Council of Scientific Society Presidents (CSSP) is an organization of presidents, presidents-elect, and recent past presidents of about sixty scientific federations and societies whose combined membership numbers well over 1.4 million scientists and science educators. The CSSP provides an opportunity for scientists and science/math educators to convene in a multidisciplinary forum for engaging in lively dialogue with invited speakers from government, academe and industry. Since 1973, CSSP has served as a strong national voice in fostering wise science policy, in support of science and science education, as the premier national science leadership development center, and as a forum for open, substantive exchanges on emerging scientific issues. http://cssp.us
For more information:
Scientists Model the Scaling Laws of Water Uptake by Plant Roots
http://www.csrees.usda.gov/newsroom/impact/2008/nri/10161_plant_roots.html
Dr. Mario Biondini, North Dakota State University
http://www.ndsu.nodak.edu/instruct/biondini/vita/mebvita.htm
Allometric scaling laws for water uptake by plant roots. Journal of Theoretical Biology 251:35-59.
A three dimensional spatial model for plant competition in a heterogeneous soil environment.

Ecological Modelling 142/3:191-227.

Media Contact

Carol Renner Newswise Science News

More Information:

http://www.ndsu.edu

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors